Unraveling the RAGE-NF-κB pathway: implications for modulating inflammation in diabetic neuropathy through photobiomodulation therapy

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/J.DIABRES.2018.02.023

Article  CAS  PubMed  Google Scholar 

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice, 157. https://doi.org/10.1016/J.DIABRES.2019.107843

Vinik AI, Nevoret ML, Casellini C, Parson H (2013) Diabetic neuropathy. Endocrinol Metab Clin North Am 42(4):747–787. https://doi.org/10.1016/J.ECL.2013.06.001

Article  PubMed  Google Scholar 

do Prado FC, Vieira WF, Fernandes de Magalhães S, Bonet IJM, Tambeli CH, Parada CA (2020) The onset speed of hyperglycemia is important to the development of neuropathic hyperalgesia in streptozotocin-induced diabetic rats. Eur J Neurosci 52(6):3642–3651. https://doi.org/10.1111/EJN.14722

Article  PubMed  Google Scholar 

Edwards JL, Vincent AM, Cheng HT, Feldman EL (2008) Diabetic neuropathy: mechanisms to management. Pharmacol Ther 120(1):1–34. https://doi.org/10.1016/J.PHARMTHERA.2008.05.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iqbal Z, Azmi S, Yadav R, Ferdousi M, Kumar M, Cuthbertson DJ, Lim J, Malik RA, Alam U (2018) Diabetic Peripheral Neuropathy: Epidemiology, diagnosis, and Pharmacotherapy. Clin Ther 40(6):828–849. https://doi.org/10.1016/J.CLINTHERA.2018.04.001

Article  PubMed  Google Scholar 

Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P (2018) Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 833:472–523. https://doi.org/10.1016/J.EJPHAR.2018.06.034

Article  CAS  PubMed  Google Scholar 

Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V (2019) Diabetic neuropathy. Nat Reviews Disease Primers 5(1). https://doi.org/10.1038/S41572-019-0092-1

Tesfaye, S., Boulton, A. J. M., Dyck, P. J., Freeman, R., Horowitz, M., Kempler, P.,Lauria, G., Malik, R. A., Spallone, V., Vinik, A., Bernardi, L., Valensi, P., Albers,J. W., Amarenco, G., Anderson, H., Arezzo, J., Backonja, M. M., Biessels, G. J., Bril,V., … Jones, T. (2010). Diabetic neuropathies: update on definitions, diagnostic criteria,estimation of severity, and treatments. Diabetes Care, 33(10), 2285–2293. https://doi.org/10.2337/DC10-1303

Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacology: Official J Korean Physiological Soc Korean Soc Pharmacol 18(1):1–14. https://doi.org/10.4196/KJPP.2014.18.1.1

Article  CAS  Google Scholar 

Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5(1):194–222. https://doi.org/10.3390/BIOM5010194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Y, Schmeichel AM, Iida H, Schmelzer JD, Low PA (2006) Enhanced inflammatory response via activation of NF-kappaB in acute experimental diabetic neuropathy subjected to ischemia-reperfusion injury. J Neurol Sci 247(1):47–52. https://doi.org/10.1016/J.JNS.2006.03.011

Article  CAS  PubMed  Google Scholar 

Khdour MR (2020) Treatment of diabetic peripheral neuropathy: a review. J Pharm Pharmacol 72(7):863–872. https://doi.org/10.1111/JPHP.13241

Article  CAS  PubMed  Google Scholar 

Chow RT, Armati PJ (2016) Photobiomodulation: implications for Anesthesia and Pain Relief. Photomed Laser Surg 34(12):599–609. https://doi.org/10.1089/PHO.2015.4048

Article  PubMed  Google Scholar 

Baltzer AWA, Ostapczuk MS, Stosch D (2016) Positive effects of low level laser therapy (LLLT) on Bouchard’s and Heberden’s osteoarthritis. Lasers Surg Med 48(5):498–504. https://doi.org/10.1002/LSM.22480

Article  PubMed  Google Scholar 

de Sousa MVP, Kawakubo M, Ferraresi C, Kaippert B, Yoshimura EM, Hamblin MR (2018) Pain management using photobiomodulation: mechanisms, location, and repeatability quantified by pain threshold and neural biomarkers in mice. J Biophotonics 11(7). https://doi.org/10.1002/JBIO.201700370

de Oliveira ME, Silva D, Brioschi JT, M. L., Chacur M (2021) Effects of photobiomodulation therapy on neuropathic pain in rats: evaluation of nociceptive mediators and infrared thermography. Lasers Med Sci 36(7):1461–1467. https://doi.org/10.1007/S10103-020-03187-9

Article  PubMed  Google Scholar 

Rocha IRC, Ciena AP, Rosa AS, Martins DO, Chacur M (2017) Photobiostimulation reverses allodynia and peripheral nerve damage in streptozotocin-induced type 1 diabetes. Lasers Med Sci 32(3):495–501. https://doi.org/10.1007/S10103-016-2140-3

Article  PubMed  Google Scholar 

de Freitas Rodrigues A, de Oliveira Martins D, Chacur M, Luz JGC (2020) The effectiveness of photobiomodulation in the management of temporomandibular pain sensitivity in rats: behavioral and neurochemical effects. Lasers Med Sci 35(2):447–453. https://doi.org/10.1007/S10103-019-02842-0

Article  PubMed  Google Scholar 

Janzadeh A, Sarveazad A, Hamblin MR, Teheripak G, Kookli K, Nasirinezhad F (2020) The effect of chondroitinase ABC and photobiomodulation therapy on neuropathic pain after spinal cord injury in adult male rats. Physiol Behav 227. https://doi.org/10.1016/J.PHYSBEH.2020.113141

Yamada EF, Bobinski F, Martins DF, Palandi J, Folmer V, da Silva MD (2020) Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats. J Biophotonics 13(1). https://doi.org/10.1002/JBIO.201900204

Bartoli DMF, Felizatti AL, Bomfim do, Bovo FRC, de Aro JL, Amaral AA, M. E. C., Esquisatto MAM (2021) Laser treatment of synovial inflammatory process in experimentally induced microcrystalline arthritis in Wistar rats. Lasers in Medical Science, 36(3), 529–540. https://doi.org/10.1007/S10103-020-03055-6

De Rodrigues NC, Barbosa AM, Vale ML, Villaverde AB, De Lima CJ, Cogo JC, Zamuner SR (2010) Anti-inflammatory effect of low-level laser and light-emitting diode in zymosan-induced arthritis. Photomed Laser Surg 28(2):227–232. https://doi.org/10.1089/PHO.2008.2422

Article  Google Scholar 

Veronez S, Assis L, Del Campo P, de Oliveira F, de Castro G, Renno ACM, Medalha CC (2017) Effects of different fluences of low-level laser therapy in an experimental model of spinal cord injury in rats. Lasers Med Sci 32(2):343–349. https://doi.org/10.1007/S10103-016-2120-7

Article  PubMed  Google Scholar 

Martins DO, dos Santos FM, Ciena AP, Watanabe I sei, de Britto LRG, Lemos JBD, Chacur M (2017) Neuropeptide expression and morphometric differences in crushed alveolar inferior nerve of rats: Effects of photobiomodulation. Lasers in Medical Science, 32(4), 833–840. https://doi.org/10.1007/S10103-017-2181-2

Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, Singh B, S (2015) Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics 8(6):489–501. https://doi.org/10.1002/JBIO.201400058

Article  CAS  PubMed  Google Scholar 

Wu X, Alberico S, Saidu E, Rahman Khan S, Zheng S, Romero R, Chae S, Li H, Mochizuki S, A., Anders J (2015) Organic light emitting diode improves diabetic cutaneous wound healing in rats. Wound Repair Regeneration: Official Publication Wound Healing Soc [and] Eur Tissue Repair Soc 23(1):104–114. https://doi.org/10.1111/WRR.12258

Article  Google Scholar 

De Oliveira Martins D, Martinez Dos Santos F, Evany De Oliveira M, De Britto LRG, Dias Lemos B, J., Chacur M (2013) Laser Therapy and Pain-Related Behavior after Injury of the Inferior Alveolar nerve: possible involvement of Neurotrophins. J Neurotrauma 30(6):480. https://doi.org/10.1089/NEU.2012.2603

Article  PubMed  PubMed Central  Google Scholar 

Oliveira CG, Freitas MF, De Sousa MVP, Giorgi R, Chacur M (2020) Photobiomodulation reduces nociception and edema in a CFA-induced muscle pain model: effects of LLLT and LEDT. Photochemical Photobiological Sciences: Official J Eur Photochem Association Eur Soc Photobiology 19(10):1392–1401. https://doi.org/10.1039/D0PP00037J

Article  CAS  Google Scholar 

Oliveira ME, Santos FM, Bonifácio RP, Freitas MF, Martins DO, Chacur M (2017) Low level laser therapy alters satellite glial cell expression and reverses nociceptive behavior in rats with neuropathic pain. Photochemical Photobiological Sciences: Official J Eur Photochem Association Eur Soc Photobiology 16(4):547–554. https://doi.org/10.1039/C6PP00360E

Article  CAS  Google Scholar 

Pinto NC, De MVP, Ferreira NL, Braga NA, Aldred A, Gomes G, Freire GMG, Ashmawi HA, Chacur M (2022) Customized Photobiomodulation modulates Pain and alters Thermography Pattern in patients with knee osteoarthritis: a Randomized double-blind pilot study. Photobiomodulation Photomed Laser Surg 40(10):698–707. https://doi.org/10.1089/PHOTOB.2022.0067

Article  CAS  Google Scholar 

Araiza-Saldaña CI, Pedraza-Priego EF, Torres-Lõpez JE, Rocha-González HI, Castañeda-Corral G, Hong-Chong E, Granados-Soto V (2015) Fosinopril prevents the development of Tactile Allodynia in a Streptozotocin-Induced Diabetic Rat Model. Drug Dev Res 76(8):442–449. https://doi.org/10.1002/DDR.21280

Article  PubMed  Google Scholar 

Cheng Y, Kang H, Shen J, Hao H, Liu J, Guo Y, Mu Y, Han W (2015) Beta-cell regeneration from vimentin+/MafB + cells after STZ-induced extreme beta-cell ablation. Scientific Reports 2015 5:1, 5(1), 1–12. https://doi.org/10.1038/srep11703

MM B (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1006/ABIO.1976.9999

Article  Google Scholar 

Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354. https://doi.org/10.1073/PNAS.76.9.4350

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif