Cho HN, Shaw JE, Karuranga S, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271–81. DOI: 10.1016/j.diabres.2018.02.023.
Lo ZJ, Surendra NK, Saxena A, Car J. Clinical and economic burden of diabetic foot ulcers: a 5-year longitudinal multi-ethnic cohort study from the tropics. Int Wound J 2021;18:375–86. DOI: 10.1111/iwj.13540.
Brownrigg JRW, Griffin M, Hughes CO, et al. Influence of foot ulceration on cause-specific mortality in patients with diabetes mellitus. J Vasc Surg 2014;60:982-6.e3. doi: 10.1016/j.jvs.2014.04.052.
Walicka M, Raczyńska M, Marcinkowska K, et al. Amputations of lower limb in subjects with diabetes mellitus: reasons and 30-day mortality. J Diabetes Res 2021;2021:1–8. DOI: 10.1155/ 2021/8866126.
Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 2017;49:106–16. DOI: 10.1080/07853890.2016. 1231932.
Zhang Y, Lazzarini PA, McPhail SM, van Netten JJ, Armstrong DG, Pacella RE. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020;43:964–74. DOI: 10.2337/dc19-1614.
Andrean D, Prasetyo S, Kristijarti A, Hudaya T. The extraction and activity test of bioactive compounds in Phaleria macrocarpa as antioxidants. Procedia Chem 2014;9:94–101. https://doi.org/10.1016/j.proche.2014.05.012.
Ahmad R, Khairul Nizam Mazlan M, Firdaus Abdul Aziz A, Mohd Gazzali A, Amir Rawa MS, Wahab HA. Phaleria macrocarpa (Scheff.) Boerl.: an updated review of pharmacological effects, toxicity studies, and separation techniques. Saudi Pharm J 2023;31:874–88. https://doi.org/10.1016/j.jsps.2023.04.006.
Sulistyoningrum E, Setiawati S. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats. Univ Med 2013;32:71-9. DOI: https://doi.org/ 10.18051/UnivMed.2013.v32.71-79.
Rizki M, Harahap U, Sitorus P. Phytochemical screening of Phaleria Macrocarpa (Scheff.) Boerl.) and antibacterial activity test of ethanol extract against Staphylococcus Aureus bacteria. Int J Sci 2023;4:422-7. DOI: https://doi.org/ 10.46729/ijstm.v4i2.781.
Widyapranata R. Ointment base for ethanolic seed extract of mahkota dewa (Phaleria macrocarpa) as an anti-bacterial against Staphylococcus aureus ATCC 25923. J Farmasi Indonesia 2011;8:7–10. DOI: https://doi.org/10.31001/jfi.v8i2.42.
Choy YB, Prausnitz MR. The rule of five for non-oral routes of drug delivery: ophthalmic, inhalation and transdermal. Pharm Res 2011; 943–8. DOI: 10.1007/s11095-010-0292-6.
Abood WN, Al-Henhena NA, Abood AN, et al. Wound-healing potential of the fruit extract of Phaleria macrocarpa. Bosn J Basic Med Sci 2015;15:25–30. https://doi.org/10.17305%2Fbjbms.2015.39.
Özay Y, Güzel S, Yumrutaş Ö, et al. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J Surg Res 2019;233:284–96. DOI: 10.1016/j.jss.2018.08.009.
Edmonds M, Manu C, Vas P. The current burden of diabetic foot disease. J Clin Orthop Trauma 2021;17:88–93. DOI: 10.1016/j.jcot.2021.01.017.
Frykberg RG, Banks J. Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015;4:560–82. DOI: 10.1089/ wound.2015.0635.
Ullah A, Khan A, Khan I. Diabetes mellitus and oxidative stress—a concise review. Saudi Pharm J 2016;24:547–53. DOI: 10.1016/j.jsps.2015. 03.013
Deng L, Du C, Song P, et al. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev 2021;2021:8852759. https://doi.org/10.1155/2021/8852759.
Komesu MC, Tanga MB, Buttros KR, Nakao C. Effects of acute diabetes on rat cutaneous wound healing. Pathophysiology 2011;11:63–7. https://doi.org/10.1016/j.pathophys.2004.02.002.
Charan J, Kantharia N. How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013;4:303–6. DOI: 10.4103/0976-500X.119726.
Ghasemi A, Jeddi S. Streptozotocin as a tool for induction of rat models of diabetes: a practical guide. EXCLI J 2023;22:274–94. DOI: 10.17179/ excli2022-5720.
Chen L, Mirza R, Kwon Y, DiPietro LA, Koh TJ. The murine excisional wound model: Contraction revisited. Wound Repair Regen 2015;23:874–7. https://doi.org/10.1111/wrr.12338.
Hidayat R, Wulandari P. Euthanasia procedure of animal model in biomedical research. J Biomed Translational Res 2021;5:540–4. https://doi.org/ 10.32539/bsm.v5i6.310.
Saleh MA, Shabaan AA, May M, Ali YM. Topical application of indigo-plant leaves extract enhances healing of skin lesion in an excision wound model in rats. J Appl Biomed 2022;20:124-9. DOI: 10.32725/jab.2022.014.
Alamoudi AA, Alharbi AS, Abdel-Naim AB, et al. Novel nanoconjugate of apamin and ceftriaxone for management of diabetic wounds. Life 2022;12:1096–120. DOI: 10.3390/ life12071096.
Tsai HC, Chang GRL, Fan HC, et al. A mini-pig model for evaluating the efficacy of autologous platelet patches on induced acute full thickness wound healing. BMC Vet Res 2019;15:1–13. DOI: 10.1186/s12917-019-1932-7.
Karabulut S, Özyaman S, Altintaş A, Keskin I. Histological effect of traditional rose ointment application in the excisional wound model. Acta Pharmac Sci 2022;60:39–47. DOI: 10.23893/ 1307-2080.APS.6003.
Yang F, Bai X, Dai X, Li Y.. The biological processes during wound healing. Regen Med 2021;16:373–90. DOI: 10.2217/rme-2020-0066.
de Moura F, Ferreira B, Deconte S, et al. Wound healing activity of the hydroethanolic extract of the leaves of Maytenus ilicifolia Mart. Ex Reis. J Tradit Complement Med 2021;11:446–56. DOI: 10.1016/j.jtcme.2021.03.003
Melguizo‐Rodríguez L, de Luna‐Bertos E, Ramos‐Torrecillas J, Illescas-Montesa R, Costela-Ruiz VJ, García-Martínez O. Potential effects of phenolic compounds that can be found in olive oil on wound healing. Foods 2021; 10:1642. DOI: 10.3390/foods10071642.
Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 2017;14:89-96. DOI: 10.1111/iwj.12557.
Petruk G, Del Giudice R, Rigano MM, Monti DM. Antioxidants from plants protect against skin photoaging. Oxid Med Cell Longev 2018;2018 1454936. doi: 10.1155/2018/1454936.
Kwon KR, Alam MB, Park JH, Kim TH, Lee SH. Attenuation of UVB-induced photo-aging by polyphenolic-rich Spatholobus suberectus stem extract via modulation of MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients 2019;11:1341–55. DOI: 10.3390/nu11061341.
Hendra R, Ahmad S, Oskoueian E, Sukari A, Shukor MY. Antioxidant, anti-inflammatory and cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff fruit. BMC Complement Altern Med 2011;11:110. DOI: 10.1186/1472-6882-11-110
Lay MM, Karsani SA, Banisalam B, Mohajer S, Abd Malek SN. Antioxidants, phytochemicals, and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl seeds. Biomed Res Int 2014;2014:1–13. DOI: 10.1155/2014/410184.
Avishai E, Yeghiazaryan K, Golubnitshaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine. EPMA J 2017;8:23–33. DOI 10.1007/s13167-017-0081-y.
Tandrasasmita OM, Sutanto AM, Arifin PF, Tjandrawinata RR. Anti-inflammatory, antiangiogenic, and apoptosis-inducing activity of DLBS1442, a bioactive fraction of Phaleria macrocarpa, in a RL95-2 cell line as a molecular model of endometriosis. Int J Womens Health 2015;7:161-9. doi: 10.2147/IJWH.S74552.
Kusmardi K, Situmorang NY, Zuraidah E, Estuningtyas A, Tedjo A. The effect of mahkota dewa (Phaleria macrocarpa) leaf extract on the mucin 1 expression in mice colonic epithelial cells induced by dextran sodium sulfate (DSS). Pharmacogn J 2021;13:1509–15. DOI:10.5530/ pj.2021.13.192.
Yuliana Y, Tandrasasmita OM, Tjandrawinata RR. Anti-inflammatory effect of predimenol, a bioactive extract from Phaleria macrocarpa, through the suppression of NF-κB and COX-2. Recent Adv Inflamm Allergy Drug Discov 2021; 15:99–107. DOI: 10.2174/2772270816666220119122259.
Mahmood A, Tiwari AK, Şahın K, Ömer K, Shakir A. Triterpenoid saponin-rich fraction of Centella asiatica decreases IL-1β and NF-κB, and augments tissue regeneration and excision wound repair. Turk J Biol 2016;40:399–409. DOI: 10.3906/biy-1507-63.
Lindley L, Stojadinovic O, Pastar I, Tomic-Canic M. Biology and biomarkers for wound healing. Plast Reconstr Surg 2017;138:18S-28S. DOI: 10.1097/PRS.0000000000002682.
Cialdai F, Risaliti C, Monici M. Role of fibroblasts in wound healing and tissue remodeling on Earth and in space. Front Bioeng Biotechnol 2022;10:958381. DOI:10.3389/fbioe. 2022.958381.
Eming SA, Martin P. Tomic-Canic M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci Transl Med 2014;6:265sr6. DOI: 10.1126/scitranslmed.3009337.
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes: cellular mechanisms of wound repair. Open Biol 2020;10:200223. DOI: 10.1098/rsob.200223.
留言 (0)