Ajayeoba, T. A., Dula, S., & Ijabadeniyi, O. A. (2019). Properties of poly-γ-glutamic acid producing-Bacillus species isolated from ogi liquor and lemon-ogi liquor. Frontiers in Microbiology, 10, 771.
Article PubMed PubMed Central Google Scholar
Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimization of fermentative production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100, 826–832.
Article CAS PubMed Google Scholar
Cai, D., Chen, Y., He, P., Wang, S., Mo, F., Li, X., Wang, Q., Nomura, C. T., Wen, Z., Ma, X., et al. (2018). Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 115, 2541–2553.
Article CAS PubMed Google Scholar
Cai, D., He, P., Lu, X., Zhu, C., Zhu, J., Zhan, Y., Wang, Q., Wen, Z., & Chen, S. (2017). A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Scientific Reports, 7, 43404.
Article CAS PubMed PubMed Central Google Scholar
Cai, M., Han, Y., Zheng, X., Xue, B., Zhang, X., Mahmut, Z., Wang, Y., Dong, B., Zhang, C., Gao, D., & Sun, J. (2024). Synthesis of poly-γ-glutamic acid and its application in biomedical materials. Materials, 17, 15.
Chen, L., Su, W., Xiao, J., Zhang, C., Zheng, J., & Zhang, F. (2021). Poly-γ-glutamic acid bioproduct improves the coastal saline soil mainly by assisting nitrogen conservation during salt-leaching process. Environmental Science and Pollution Research, 28, 8606–8614.
Article CAS PubMed Google Scholar
Feng, J., Shi, Q., Zhou, G., Wang, L., Chen, A., Xie, X., Huang, X., & Hu, W. (2017). Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochemistry, 56, 30–36.
Gunka, K., & Commichau, F. M. (2012). Control of glutamate homeostasis in Bacillus subtilis: A complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Molecular Microbiology, 850, 213–224.
Halmschlag, B., Putri, S. P., Fukusaki, E., & Blank, L. M. (2020). Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. Journal of Bioscience and Bioengineering, 130, 272–282.
Article CAS PubMed Google Scholar
Huang, B., Qin, P., Xu, Z., Zhu, R., & Meng, Y. (2011a). Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresource Technology, 102, 3595–3598.
Article CAS PubMed Google Scholar
Huang, J., Du, Y., Xu, G., Zhang, H., Zhu, F., Huang, L., & Xu, Z. (2011b). High yield and cost-effective production of poly (γ-glutamic acid) with Bacillus subtilis. Engineering in Life Sciences, 11, 291–297.
Jault, J. M., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J., & Galinier, A. (2000). The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. The Journal of Biological Chemistry, 275, 1773–1780.
Article CAS PubMed Google Scholar
Ji, G., Xu, L., Lyu, Q., Liu, Y., Gong, X., Li, X., & Yan, Z. (2021). Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation. Bioprocess and Biosystems Engineering, 44, 2181–2191.
Article CAS PubMed Google Scholar
Ju, W. T., Song, Y. S., Jung, W. J., & Park, R. D. (2014). Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis. Biotechnology Letters, 36, 2319–2324.
Article CAS PubMed Google Scholar
Kedia, G., Hill, D., Hill, R., & Radecka, I. (2010). Production of poly-γ-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media. Journal of Nanoscience and Nanotechnology, 10, 5926–5934.
Article CAS PubMed Google Scholar
Kim, M. H., Lee, J., Lee, J. N., Lee, H., & Park, W. H. (2021). Mussel-inspired poly(γ-glutamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration. Acta Biomaterialia, 123, 254–262.
Article CAS PubMed Google Scholar
Kongklom, N., Luo, H., Shi, Z., Pechyen, C., Chisti, Y., & Sirisansaneeyakul, S. (2015). Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochemical Engineering Journal, 100, 67–75.
Li, B., Cai, D., & Chen, S. (2021). Metabolic engineering of central carbon metabolism of Bacillus licheniformis for enhanced production of poly-γ-glutamic acid. Applied Biochemistry and Biotechnology, 193, 3540–3552.
Article CAS PubMed Google Scholar
Li, J., Chen, S., Fu, J., Xie, J., Ju, J., Yu, B., & Wang, L. (2022). Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain. Microbial Cell Factories, 21, 140.
Article CAS PubMed PubMed Central Google Scholar
Liu, H., Yan, Q., Wang, Y., Li, Y., & Jiang, Z. (2022). Efficient production of poly-γ-glutamic acid by Bacillus velezensis via solid-state fermentation and its application. Food Bioscience, 46, 101575.
Mahaboob Ali, A. A., Momin, B., & Ghogare, P. (2020). Isolation of a novel poly-γ-glutamic acid-producing Bacillus licheniformis A14 strain and optimization of fermentation conditions for high-level production. Preparative Biochemistry & Biotechnology, 50, 445–452.
Min, J. H., Reddy, L. V., Dimitris, C., Kim, Y. M., & Wee, Y. J. (2019). Optimized production of poly(γ-glutamic acid) by Bacillus sp. FBL-2 through response surface methodology using central composite design. Journal of Microbiology and Biotechnology, 29, 1061–1070.
Article CAS PubMed Google Scholar
Mitsunaga, H., Meissner, L., Palmen, T., Bamba, T., Büchs, J., & Fukusaki, E. (2016). Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. Journal of Bioscience and Bioengineering, 121, 413–419.
Article CAS PubMed Google Scholar
Peng, Y., Jiang, B., Zhang, T., Mu, W., Miao, M., & Hua, Y. (2015). High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochemistry, 50, 329–335.
Poo, H., Park, C., Kwak, M. S., Choi, D. Y., Hong, S. P., Lee, I. H., Lim, Y. T., Choi, Y. K., Bae, S. R., Uyama, H., et al. (2010). New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid. Chemistry & Biodiversity, 7, 1555–1562.
Qiao, M., Zhang, T., & Miao, M. (2024). Minced beef meat paste characteristics: Gel properties, water distribution, and microstructures regulated by medium molecular mass of γ-poly-glutamic acid. Foods, 13, 510.
Article CAS PubMed PubMed Central Google Scholar
Qiu, Y., Sha, Y., Zhang, Y., Xu, Z., Li, S., Lei, P., Xu, Z., Feng, X., & Xu, H. (2017). Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresource Technology, 239, 197–203.
Article CAS PubMed Google Scholar
Silva, S. B., Cantarelli, V. V., & Ayub, M. A. (2014). Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment. Bioprocess and Biosystems Engineering, 37, 469–479.
Sugumaran, K. R., & Ponnusami, V. (2017). Review on production, downstream processing and characterization of microbial pullulan. Carbohydrate Polymers, 173, 573–591.
Taymaz-Nikere, H., & Lara, A. R. (2022). Vitreoscilla haemoglobin: A tool to reduce overflow metabolism. Microorganisms, 10, 43.
Tsia, S. Y., Chang, C. K., Wei, P. Y., Huang, S. Y., Gavahian, M., Santoso, S. P., & Hsieh, C. W. (2024). Effective removal of different heavy metals ion (Cu, Pb, and Cd) from aqueous solutions by various molecular weight and salt typ
留言 (0)