Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29

Ajayeoba, T. A., Dula, S., & Ijabadeniyi, O. A. (2019). Properties of poly-γ-glutamic acid producing-Bacillus species isolated from ogi liquor and lemon-ogi liquor. Frontiers in Microbiology, 10, 771.

Article  PubMed  PubMed Central  Google Scholar 

Bajaj, I. B., Lele, S. S., & Singhal, R. S. (2009). A statistical approach to optimization of fermentative production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100, 826–832.

Article  CAS  PubMed  Google Scholar 

Cai, D., Chen, Y., He, P., Wang, S., Mo, F., Li, X., Wang, Q., Nomura, C. T., Wen, Z., Ma, X., et al. (2018). Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnology and Bioengineering, 115, 2541–2553.

Article  CAS  PubMed  Google Scholar 

Cai, D., He, P., Lu, X., Zhu, C., Zhu, J., Zhan, Y., Wang, Q., Wen, Z., & Chen, S. (2017). A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Scientific Reports, 7, 43404.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, M., Han, Y., Zheng, X., Xue, B., Zhang, X., Mahmut, Z., Wang, Y., Dong, B., Zhang, C., Gao, D., & Sun, J. (2024). Synthesis of poly-γ-glutamic acid and its application in biomedical materials. Materials, 17, 15.

Article  CAS  Google Scholar 

Chen, L., Su, W., Xiao, J., Zhang, C., Zheng, J., & Zhang, F. (2021). Poly-γ-glutamic acid bioproduct improves the coastal saline soil mainly by assisting nitrogen conservation during salt-leaching process. Environmental Science and Pollution Research, 28, 8606–8614.

Article  CAS  PubMed  Google Scholar 

Feng, J., Shi, Q., Zhou, G., Wang, L., Chen, A., Xie, X., Huang, X., & Hu, W. (2017). Improved production of poly-γ-glutamic acid with low molecular weight under high ferric ion concentration stress in Bacillus licheniformis ATCC 9945a. Process Biochemistry, 56, 30–36.

Article  CAS  Google Scholar 

Gunka, K., & Commichau, F. M. (2012). Control of glutamate homeostasis in Bacillus subtilis: A complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Molecular Microbiology, 850, 213–224.

Article  Google Scholar 

Halmschlag, B., Putri, S. P., Fukusaki, E., & Blank, L. M. (2020). Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. Journal of Bioscience and Bioengineering, 130, 272–282.

Article  CAS  PubMed  Google Scholar 

Huang, B., Qin, P., Xu, Z., Zhu, R., & Meng, Y. (2011a). Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(γ-glutamic acid). Bioresource Technology, 102, 3595–3598.

Article  CAS  PubMed  Google Scholar 

Huang, J., Du, Y., Xu, G., Zhang, H., Zhu, F., Huang, L., & Xu, Z. (2011b). High yield and cost-effective production of poly (γ-glutamic acid) with Bacillus subtilis. Engineering in Life Sciences, 11, 291–297.

Article  CAS  Google Scholar 

Jault, J. M., Fieulaine, S., Nessler, S., Gonzalo, P., Di Pietro, A., Deutscher, J., & Galinier, A. (2000). The HPr kinase from Bacillus subtilis is a homo-oligomeric enzyme which exhibits strong positive cooperativity for nucleotide and fructose 1,6-bisphosphate binding. The Journal of Biological Chemistry, 275, 1773–1780.

Article  CAS  PubMed  Google Scholar 

Ji, G., Xu, L., Lyu, Q., Liu, Y., Gong, X., Li, X., & Yan, Z. (2021). Poly-γ-glutamic acid production by simultaneous saccharification and fermentation using corn straw and its fertilizer synergistic effect evaluation. Bioprocess and Biosystems Engineering, 44, 2181–2191.

Article  CAS  PubMed  Google Scholar 

Ju, W. T., Song, Y. S., Jung, W. J., & Park, R. D. (2014). Enhanced production of poly-γ-glutamic acid by a newly-isolated Bacillus subtilis. Biotechnology Letters, 36, 2319–2324.

Article  CAS  PubMed  Google Scholar 

Kedia, G., Hill, D., Hill, R., & Radecka, I. (2010). Production of poly-γ-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media. Journal of Nanoscience and Nanotechnology, 10, 5926–5934.

Article  CAS  PubMed  Google Scholar 

Kim, M. H., Lee, J., Lee, J. N., Lee, H., & Park, W. H. (2021). Mussel-inspired poly(γ-glutamic acid)/nanosilicate composite hydrogels with enhanced mechanical properties, tissue adhesive properties, and skin tissue regeneration. Acta Biomaterialia, 123, 254–262.

Article  CAS  PubMed  Google Scholar 

Kongklom, N., Luo, H., Shi, Z., Pechyen, C., Chisti, Y., & Sirisansaneeyakul, S. (2015). Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochemical Engineering Journal, 100, 67–75.

Article  CAS  Google Scholar 

Li, B., Cai, D., & Chen, S. (2021). Metabolic engineering of central carbon metabolism of Bacillus licheniformis for enhanced production of poly-γ-glutamic acid. Applied Biochemistry and Biotechnology, 193, 3540–3552.

Article  CAS  PubMed  Google Scholar 

Li, J., Chen, S., Fu, J., Xie, J., Ju, J., Yu, B., & Wang, L. (2022). Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain. Microbial Cell Factories, 21, 140.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, H., Yan, Q., Wang, Y., Li, Y., & Jiang, Z. (2022). Efficient production of poly-γ-glutamic acid by Bacillus velezensis via solid-state fermentation and its application. Food Bioscience, 46, 101575.

Article  CAS  Google Scholar 

Mahaboob Ali, A. A., Momin, B., & Ghogare, P. (2020). Isolation of a novel poly-γ-glutamic acid-producing Bacillus licheniformis A14 strain and optimization of fermentation conditions for high-level production. Preparative Biochemistry & Biotechnology, 50, 445–452.

Article  CAS  Google Scholar 

Min, J. H., Reddy, L. V., Dimitris, C., Kim, Y. M., & Wee, Y. J. (2019). Optimized production of poly(γ-glutamic acid) by Bacillus sp. FBL-2 through response surface methodology using central composite design. Journal of Microbiology and Biotechnology, 29, 1061–1070.

Article  CAS  PubMed  Google Scholar 

Mitsunaga, H., Meissner, L., Palmen, T., Bamba, T., Büchs, J., & Fukusaki, E. (2016). Metabolome analysis reveals the effect of carbon catabolite control on the poly (γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. Journal of Bioscience and Bioengineering, 121, 413–419.

Article  CAS  PubMed  Google Scholar 

Peng, Y., Jiang, B., Zhang, T., Mu, W., Miao, M., & Hua, Y. (2015). High-level production of poly(γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus. Process Biochemistry, 50, 329–335.

Article  CAS  Google Scholar 

Poo, H., Park, C., Kwak, M. S., Choi, D. Y., Hong, S. P., Lee, I. H., Lim, Y. T., Choi, Y. K., Bae, S. R., Uyama, H., et al. (2010). New biological functions and applications of high-molecular-mass poly-gamma-glutamic acid. Chemistry & Biodiversity, 7, 1555–1562.

Article  CAS  Google Scholar 

Qiao, M., Zhang, T., & Miao, M. (2024). Minced beef meat paste characteristics: Gel properties, water distribution, and microstructures regulated by medium molecular mass of γ-poly-glutamic acid. Foods, 13, 510.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qiu, Y., Sha, Y., Zhang, Y., Xu, Z., Li, S., Lei, P., Xu, Z., Feng, X., & Xu, H. (2017). Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresource Technology, 239, 197–203.

Article  CAS  PubMed  Google Scholar 

Silva, S. B., Cantarelli, V. V., & Ayub, M. A. (2014). Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment. Bioprocess and Biosystems Engineering, 37, 469–479.

Article  PubMed  Google Scholar 

Sugumaran, K. R., & Ponnusami, V. (2017). Review on production, downstream processing and characterization of microbial pullulan. Carbohydrate Polymers, 173, 573–591.

Article  CAS  Google Scholar 

Taymaz-Nikere, H., & Lara, A. R. (2022). Vitreoscilla haemoglobin: A tool to reduce overflow metabolism. Microorganisms, 10, 43.

Article  Google Scholar 

Tsia, S. Y., Chang, C. K., Wei, P. Y., Huang, S. Y., Gavahian, M., Santoso, S. P., & Hsieh, C. W. (2024). Effective removal of different heavy metals ion (Cu, Pb, and Cd) from aqueous solutions by various molecular weight and salt typ

留言 (0)

沒有登入
gif