Clinical management of eye diseases: carotenoids and their nanoformulations as choice of therapeutics

Abu-Amero KK, Kondkar AA, Chalam KV (2016) Resveratrol and ophthalmic diseases. Nutrients 8:200. https://doi.org/10.3390/nu8040200

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aguirre-Joya JA, Chacón-Garza LE, Valdivia-Najár G et al (2020) Nanosystems of plant-based pigments and its relationship with oxidative stress. Food Chem Toxicol 143:111433. https://doi.org/10.1016/j.fct.2020.111433

Article  CAS  PubMed  Google Scholar 

Ahn YJ, Kim H (2021) Lutein as a modulator of oxidative stress-mediated inflammatory diseases. Antioxidants 10:1448

Article  CAS  PubMed  Google Scholar 

Alda LM, Gogoasa I, Bordean D-M et al (2009) Lycopene content of tomatoes and tomato products. J Agroaliment Process Technol 15:540–542

CAS  Google Scholar 

Aleman TS, Duncan JL, Bieber ML et al (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and usher syndrome. Investig Ophthalmol vis Sci 42:1873–1881

CAS  Google Scholar 

Alkozi HA, Franco R, Pintor JJ (2017) Epigenetics in the eye: An overview of the most relevant ocular diseases. Front Genet 8:144. https://doi.org/10.3389/fgene.2017.00144

Article  CAS  PubMed  PubMed Central  Google Scholar 

Amorim ADGN, Vasconcelos AG, Souza J et al (2022) Bio-availability, anticancer potential, and chemical data of lycopene: an overview and technological prospecting. Antioxidants 11:360. https://doi.org/10.3390/antiox11020360

Article  CAS  PubMed  PubMed Central  Google Scholar 

Arnold C, Winter L, Fröhlich K et al (2013) Macular xanthophylls and ω-3 long-chain polyunsaturated fatty acids in age-related macular degeneration : a randomized trial. JAMA Ophthalmol 131:564–572. https://doi.org/10.1001/jamaophthalmol.2013.2851

Article  CAS  PubMed  Google Scholar 

Azar G, Quaranta-El Maftouhi M, Masella J-J, Mauget-Faÿsse M (2017) Macular pigment density variation after supplementation of lutein and zeaxanthin using the Visucam ® 200 pigment module: impact of age-related macular degeneration and lens status. J Fr Ophtalmol 40:303–313. https://doi.org/10.1016/j.jfo.2016.11.009

Article  CAS  PubMed  Google Scholar 

Babizhayev MA (2016) Generation of reactive oxygen species in the anterior eye segment. Synergistic codrugs of N-acetylcarnosine lubricant eye drops and mitochondria-targeted antioxidant act as a powerful therapeutic platform for the treatment of cataracts and primary open-an. BBA Clin 6:49–68. https://doi.org/10.1016/j.bbacli.2016.04.004

Article  PubMed  PubMed Central  Google Scholar 

Bahbah EI, Ghozy S, Attia MS et al (2021) Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar Drugs 19:201. https://doi.org/10.3390/md19040201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bahrami H, Melia M, Dagnelie G (2006) Lutein supplementation in retinitis pigmentosa: PC-based vision assessment in a randomized double-masked placebo-controlled clinical trial [NCT00029289]. BMC Ophthalmol 6:1. https://doi.org/10.1186/1471-2415-6-23

Article  CAS  Google Scholar 

Benlarbi-Ben Khedher M, Hajri K, Dellaa A et al (2019) Astaxanthin inhibits aldose reductase activity in Psammomys obesus, a model of type 2 diabetes and diabetic retinopathy. Food Sci Nutr 7:3979–3985. https://doi.org/10.1002/fsn3.1259

Article  CAS  PubMed  PubMed Central  Google Scholar 

Beppu F, Niwano Y, Tsukui T et al (2009) Single and repeated oral dose toxicity study of fucoxanthin (FX), a marine carotenoid, in mice. J Toxicol Sci 34:501–510

Article  CAS  PubMed  Google Scholar 

Bodoki E, Vostinaru O, Samoila O et al (2019) Topical nanodelivery system of lutein for the prevention of selenite-induced cataract. Nanomedicine Nanotechnology, Biol Med 15:188–197. https://doi.org/10.1016/j.nano.2018.09.016

Article  CAS  Google Scholar 

Bolla PK, Gote V, Singh M et al (2020) Lutein-loaded, biotin-decorated polymeric nanoparticles enhance lutein uptake in retinal cells. Pharmaceutics 12:1–17. https://doi.org/10.3390/pharmaceutics12090798

Article  CAS  Google Scholar 

Bose T, Diedrichs-Möhring M, Wildner G (2016) Dry eye disease and uveitis: a closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 15:1181–1192. https://doi.org/10.1016/j.autrev.2016.09.001

Article  CAS  PubMed  Google Scholar 

Bungau S, Abdel-Daim MM, Tit DM et al (2019) Health benefits of polyphenols and carotenoids in age-related eye diseases. Oxid Med Cell Longev 2019:9783429. https://doi.org/10.1155/2019/9783429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G (2018) The effect of lutein on eye and extra-eye health. Nutrients 10:1321. https://doi.org/10.3390/nu10091321

Caseiro M, Ascenso A, Costa A et al (2020a) Lycopene in human health. Lwt 127:109. https://doi.org/10.1016/j.lwt.2020.109323

Article  CAS  Google Scholar 

Caseiro M, Ascenso A, Costa A et al (2020b) Lycopene in Human Health Lwt 127:109323

CAS  Google Scholar 

Casson RJ, Chidlow G, Wood JPM et al (2012) Definition of glaucoma: clinical and experimental concepts. Clin Exp Ophthalmol 40:341–349. https://doi.org/10.1111/j.1442-9071.2012.02773.x

Article  PubMed  Google Scholar 

Chan CM, Fang JY, Lin HH et al (2009) Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways. Biochem Biophys Res Commun 388:172–176. https://doi.org/10.1016/j.bbrc.2009.07.155

Article  CAS  PubMed  Google Scholar 

Chen SJ, Lee CJ, Bin LT et al (2016) Inhibition of ultraviolet B-induced expression of the proinflammatory cytokines tNF-α and VEGF in the cornea by fucoxanthin treatment in a rat model. Mar Drugs 14:13. https://doi.org/10.3390/md14010013

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen SJ, Lee CJ, Bin Lin T et al (2019) Protective effects of fucoxanthin on ultraviolet B-induced corneal denervation and inflammatory pain in a rat model. Mar Drugs 17:152. https://doi.org/10.3390/md17030152

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen SJ, Bin LT, Peng HY et al (2021a) Protective effects of fucoxanthin dampen pathogen-associated molecular pattern (Pamp) lipopolysaccharide-induced inflammatory action and elevated intraocular pressure by activating nrf2 signaling and generating reactive oxygen species. Antioxidants 10:1092. https://doi.org/10.3390/antiox10071092

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen SJ, Bin Lin T, Peng HY et al (2021b) Cytoprotective potential of fucoxanthin in oxidative stress-induced age-related macular degeneration and retinal pigment epithelial cell senescence in vivo and in vitro. Mar Drugs 19:114. https://doi.org/10.3390/MD19020114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen YZ, Chen ZY, Tang YJ et al (2021c) Development of lutein-containing eye drops for the treatment of dry eye syndrome. Pharmaceutics 13:1801. https://doi.org/10.3390/pharmaceutics13111801

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, He N, Yang T et al (2022) Fucoxanthin loaded in palm stearin-and cholesterol-based solid lipid nanoparticle-microcapsules, with improved stability and bioavailability in vivo. Mar Drugs 20:237

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chew EY, Clemons T, Sangiovanni JP et al (2012) The age-related eye disease study 2 (AREDS2): study design and baseline characteristics (AREDS2 report number 1). Ophthalmology 119:2282–2289.

留言 (0)

沒有登入
gif