Plasilova ML, Hayse B, Killelea BK, Horowitz NR, Chagpar AB, Lannin DR (2016) Features of triple-negative breast cancer: analysis of 38,813 cases from the national cancer database. Medicine 95(35):e4614
PubMed PubMed Central Google Scholar
Yin L, Duan J-J, Bian X-W, Yu S-c (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22(1):61. https://doi.org/10.1186/s13058-020-01296-5
PubMed PubMed Central Google Scholar
Li Y, Zhang H, Merkher Y, Chen L, Liu N, Leonov S, Chen Y (2022) Recent advances in therapeutic strategies for triple-negative breast cancer. J Hematol Oncol 15(1):121. https://doi.org/10.1186/s13045-022-01341-0
CAS PubMed PubMed Central Google Scholar
Grozdanovic J, Vích Z, Truxová G (1968) The combined effect of 6-azauridine and irradiation in vivo and in vitro. II. The nucleic acid livel in the ehrlich ascitic carcinoma cells after repeated applications of 6-AzUR and irradiation in vitro. Neoplasma 15(6):685–687
Grozdanovic J, Vích Z, Truxová G, Kratochvíl J (1970) Combined effect of 6-azauridine and irradiation in vivo and in vitro. VI. Nuclear diameters of Ehrlich ascites carcinoma cells after repeated irradiation and 6-AzUR application. Neoplasma 17(6):601–606
Magdon E (1971) Effect of 6-azauridine in the irradiation of tumors. Radiol Diagn (Berl) 12(4):535–544
Bai X, Ni J, Beretov J, Graham P, Li Y (2021) Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett 497:100–111. https://doi.org/10.1016/j.canlet.2020.10.016
Bhat V, Pellizzari S, Allan AL, Wong E, Lock M, Brackstone M, Lohmann AE, Cescon DW, Parsyan A (2022) Radiotherapy and radiosensitization in breast cancer: molecular targets and clinical applications. Crit Rev Oncol Hematol 169:103566. https://doi.org/10.1016/j.critrevonc.2021.103566
Barcellini A, Loap P, Murata K, Villa R, Kirova Y, Okonogi N, Orlandi E (2021) PARP inhibitors in combination with radiotherapy: to do or not to do? Cancers. https://doi.org/10.3390/cancers13215380
PubMed PubMed Central Google Scholar
Chan EWC, Wong SK, Chan HT (2021) An overview on the chemistry, pharmacology and anticancer properties of tetrandrine and fangchinoline (alkaloids) from Stephania tetrandra roots. J Integrat Med 19(4):311–316. https://doi.org/10.1016/j.joim.2021.01.001
Khan MK, Nasti TH, Buchwald ZS, Weichselbaum RR, Kron SJ (2019) Repurposing drugs for cancer radiotherapy: early successes and emerging opportunities. Cancer J (Sudbury, Mass) 25(2):106–115. https://doi.org/10.1097/ppo.0000000000000369
Bibby BAS, Thiruthaneeswaran N, Yang L, Pereira RR, More E, McArt DG, O’Reilly P, Bristow RG, Williams KJ, Choudhury A, West CML (2021) Repurposing FDA approved drugs as radiosensitizers for treating hypoxic prostate cancer. BMC Urol 21(1):96. https://doi.org/10.1186/s12894-021-00856-x
CAS PubMed PubMed Central Google Scholar
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S (2020) Drug repurposing for triple-negative breast cancer. J Pers Med. https://doi.org/10.3390/jpm10040200
PubMed PubMed Central Google Scholar
Seley-Radtke KL, Yates MK (2018) The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res 154:66–86. https://doi.org/10.1016/j.antiviral.2018.04.004
CAS PubMed PubMed Central Google Scholar
Schultz CJ, Gaffney DK, Lindstrom MJ, Kinsella TJ (1995) Iododeoxyuridine radiosensitization of human glioblastoma cells exposed to acute and chronic gamma irradiation: mechanistic implications and clinical relevance. Cancer J Sci Am 1(2):151–161
Zhang Q, Mi Z, Huang Y, Ma L, Ding J, Wang J, Zhang Y, chen Y, Zhou J, Guo F, Li X, Cen S, (2016) 2-thio-6-azauridine inhibits Vpu mediated BST-2 degradation. Retrovirology 13(1):13. https://doi.org/10.1186/s12977-016-0247-z
CAS PubMed PubMed Central Google Scholar
Gavara MM, Zaveri K, Badana AK, Gugalavath S, Amajala KC, Patnala K, Malla RR (2018) A novel small molecule inhibitor of CD151 inhibits proliferation of metastatic triple negative breast cancer cell lines. Process Biochem 66:254–262. https://doi.org/10.1016/j.procbio.2017.12.004
Marni R, Malla M, Chakraborty A, Malla R (2023) Proteomic profiling and ROC analysis identify CD151 and ELAVL1 as potential therapy response markers for the antiviral drug in resistant TNBC. Life Sci 320:121534
Morris ZS, Harari PM (2014) Interaction of radiation therapy with molecular targeted agents. J Clin Oncol 32(26):2886–2893. https://doi.org/10.1200/jco.2014.55.1366
CAS PubMed PubMed Central Google Scholar
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H (2017) Combination therapy in combating cancer. Oncotarget 8(23):38022–38043. https://doi.org/10.18632/oncotarget.16723
Kumari S, Badana AK, Mohan GM, Shailender Naik G, Malla R (2017) Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines. Biomed Pharmacother 91:436–445. https://doi.org/10.1016/j.biopha.2017.04.027
Zhou ZR, Wang XY, Yu XL, Mei X, Chen XX, Hu QC, Yang ZZ, Guo XM (2020) Building radiation-resistant model in triple-negative breast cancer to screen radioresistance-related molecular markers. Ann Translat Med 8(4):108. https://doi.org/10.21037/atm.2019.12.114
Akella M, Malla R (2020) Molecular modeling and in vitro study on pyrocatechol as potential pharmacophore of CD151 inhibitor. J Mole Graph Model 100:107681. https://doi.org/10.1016/j.jmgm.2020.107681
Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3(3):e00149. https://doi.org/10.1002/prp2.149
PubMed PubMed Central Google Scholar
Cechakova L, Ondrej M, Pavlik V, Jost P, Cizkova D, Bezrouk A, Pejchal J, Amaravadi RK, Winkler JD, Tichy A (2019) A potent autophagy inhibitor (Lys05) enhances the impact of ionizing radiation on human lung cancer cells H1299. Int J Mole Sci. https://doi.org/10.3390/ijms20235881
Badana A, Chintala M, Varikuti G, Pudi N, Kumari S, Kappala VR, Malla RR (2016) Lipid raft integrity is required for survival of triple negative breast cancer cells. J Breast Cancer 19(4):372–384. https://doi.org/10.4048/jbc.2016.19.4.372
PubMed PubMed Central Google Scholar
Devi G, Badana A, Madhuri Ch MMP, Naik S (2017) Knockdown of CD151 gene expression reduces survival of estrogen receptor positive breast cancer cells. J Clin Exp Oncol. https://doi.org/10.4172/2324-9110.1000186
Shailender G, Patanla K, Malla RR (2020) ShRNA-mediated matrix metalloproteinase-2 gene silencing protects normal cells and sensitizes cancer cells against ionizing-radiation induced damage. J Cell Biochem 121(2):1332–1352. https://doi.org/10.1002/jcb.29369
Badana AK, Chintala M, Gavara MM, Naik S, Kumari S, Kappala VR, Iska BR, Malla RR (2018) Lipid rafts disruption induces apoptosis by attenuating expression of LRP6 and survivin in triple negative breast cancer. Biomed Pharmacother 97:359–368. https://doi.org/10.1016/j.biopha.2017.10.045
Jacobs KM, Misri S, Meyer B, Raj S, Zobel CL, Sleckman BP, Hallahan DE, Sharma GG (2016) Unique epigenetic influence of H2AX phosphorylation and H3K56 acetylation on normal stem cell radioresponses. Mol Biol Cell 27(8):1332–1345. https://doi.org/10.1091/mbc.E16-01-0017
CAS PubMed PubMed Central Google Scholar
Liu K, Liu PC, Liu R, Wu X (2015) Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry. Med Sci Monit Basic Res 21:15–20. https://doi.org/10.12659/msmbr.893327
PubMed PubMed Central Google Scholar
Bevara GB, Kumar ADN, Koteswramma KL, Badana AK, Kumari S, Yarla NS, Malla RR (2017) C-glycosyl flavone from urginea indica inhibits growth and dissemination of ehrlich ascites carcinoma cells in mice. Anticancer Agents Med Chem 17(9):1256–1266. https://doi.org/10.2174/1871520617666170103101844
Shailender G, Patanla K, Malla RR (2020) ShRNA-mediated matrix metalloproteinase-2 gene silencing protects normal cells and sensitizes cancer cells against ionizing-radiation induced damage. J Cell Biochem 121(2):1332–1352
Deepa
留言 (0)