The effect of friction block hole configurations on the brake tribological performance of high-speed trains

Raturi V, Verma A. Analyzing competition between High Speed Rail and Bus mode using market entry game analysis. Transp Res Procedia 25: 2373–2384 (2017)

Article  Google Scholar 

Shi L B, Wang F, Ma L, Liu Q Y, Guo J, Wang W J. Study of the friction and vibration characteristics of the braking disc/pad interface under dry and wet conditions. Tribol Int 127: 533–544 (2018)

Article  Google Scholar 

Mann R, Magnier V, Brunei J F, Brunei F, Dufrénoy P, Henrion M. Relation between mechanical behavior and microstructure of a sintered material for braking application. Wear 386-387: 1–16 (2017)

Article  Google Scholar 

Zhang P, Zhang L, Fu K X, Cao J W, Shijia C R, Qu X H. Effects of different forms of Fe powder additives on the simulated braking performance of Cu-based friction materials for high-speed railway trains. Wear 414-415: 317–326 (2018)

Article  Google Scholar 

Ghadimi B, Kowsary F, Khorami M. Thermal analysis of locomotive wheel-mounted brake disc. Appl Therm Eng 51(1–2): 948–952 (2013)

Article  Google Scholar 

Xiao Y L, Zhang Z Y, Yao P P, Fan K Y, Zhou H B, Gong T M, Zhao L, Deng M W. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int 119: 585–592 (2018)

Article  Google Scholar 

Wang Z Z, Han J M, Liu X L, Li Z Q, Yang Z Y, Chen E Q. Temperature evolution of the train brake disc during high-speed braking. Adv Mech Eng 11(1): 168781401881956 (2019)

Article  Google Scholar 

Bauzin J G, Laraqi N. Three-dimensional analytical calculation of the temperature in a brake disc of a high-speed train. Appl Therm Eng 154: 668–675 (2019)

Article  Google Scholar 

Zarraga O, Ulacia I, Abete J M, Ouyang H J. Receptance based structural modification in a simple brake-clutch model for squeal noise suppression. Mech Syst Signal Process 90: 222–233 (2017)

Article  Google Scholar 

Chen F, Ouyang H J, Wang X C. A new mechanism for friction-induced vibration and noise. Friction 11(2): 302–315 (2023)

Article  Google Scholar 

Sinou J J, Loyer A, Chiello O, Mogenier G, Lorang X, Cocheteux F, Bellaj S. A global strategy based on experiments and simulations for squeal prediction on industrial railway brakes. J Sound Vib 332(20): 5068–5085 (2013)

Article  Google Scholar 

Cascetta F, Caputo F, De Luca A. Squeal frequency of a railway disc brake evaluation by FE analyses. Adv Acoust Vib 2018: 4692570 (2018)

Google Scholar 

Massi F, Berthier Y, Baillet L. Contact surface topography and system dynamics of brake squeal. Wear 265(11–12): 1784–1792 (2008)

Article  Google Scholar 

Renault A, Massa F, Lallemand B, Tison T. Experimental investigations for uncertainty quantification in brake squeal analysis. J Sound Vib 367: 37–55 (2016)

Article  Google Scholar 

Lee S, Jang H. Effect of plateau distribution on friction instability of brake friction materials. Wear 400-401: 1–9 (2018)

Article  Google Scholar 

Li Z, Chen J, Li J Z, Liu K. Effect of textured surface on the frictional noise under line contact and sliding-rolling conditions. Proc Inst Mech Eng Part C J Mech Eng Sci 232(9): 1679–1689 (2018)

Article  Google Scholar 

Popov M, Popov V L, Popov N V. Reduction of friction by normal oscillations. I. Influence of contact stiffness. Friction 5(1): 45–55 (2017)

Article  Google Scholar 

Hetzler H, Willner K. On the influence of contact tribology on brake squeal. Tribol Int 46(1): 237–246 (2012)

Article  Google Scholar 

Peng T, Yan Q Z, Zhang X L. Stability of metal matrix composite pads during high-speed braking. Tribol Lett 66(2): 63 (2018)

Article  Google Scholar 

Lu X D, Zhao J, Mo J L, Zhang Q, Zhang X, Zhou Z R. Improvement of dynamical and tribological properties of friction systems by introducing parallel-grooved structures in elastic damping components. Compos Struct 192: 8–19 (2018)

Article  Google Scholar 

Tang B, Mo J L, Xu J W, Wu Y K, Zhu M H, Zhou Z R. Effect of perforated structure of friction block on the wear, thermal distribution and noise characteristics of railway brake systems. Wear 426:1176–1186 (2019)

Article  Google Scholar 

Kasem H, Brunel J F, Dufrénoy P, Siroux M, Desmet B. Thermal levels and subsurface damage induced by the occurrence of hot spots during high-energy braking. Wear 270(5–6): 355–364 (2011)

Article  Google Scholar 

Grzes P, Oliferuk W, Adamowicz A, Kochanowski K, Wasilewski P, Yevtushenko A A. The numerical–experimental scheme for the analysis of temperature field in a pad-disc braking system of a railway vehicle at single braking. Int Commun Heat Mass Transf 75: 1–6 (2016)

Article  Google Scholar 

Chandra Verma P, Menapace L, Bonfanti A, Ciudin R, Gialanella S, Straffelini G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear 322-323: 251–258 (2015)

Article  Google Scholar 

Xiao Y L, Zhang Z Y, Yao P P, Fan K Y, Zhou H B, Gong T M, Zhao L, Deng M W. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Int 119: 585–592 (2018)

Article  Google Scholar 

Xu J Y, Mo J L, Huang B, Wang X C, Zhang X, Zhou Z R. Reducing friction-induced vibration and noise by clearing wear debris from contact surface by blowing air and adding magnetic field. Wear 408-409: 238–247 (2018)

Article  Google Scholar 

Chen G X, Lv J Z, Zhu Q, He Y, Xiao X B. Effect of the braking pressure variation on disc brake squeal of a railway vehicle: Test measurement and finite element analysis. Wear 426-427: 1788–1796 (2019)

Article  Google Scholar 

Gbadeyan O J, Kanny K. Tribological behaviors of polymer-based hybrid nanocomposite brake pad. J Tribol 140(3): 032003 (2018)

Article  Google Scholar 

Zhang P, Zhang L, Fu K X, Wu P F, Cao J W, Shijia C R, Qu X H. The effect of Al2O3 fiber additive on braking performance of copper-based brake pads utilized in high-speed railway train. Tribol Int 135: 444–456 (2019)

Article  Google Scholar 

Baghani M, Aliofkhazraei M, Askari M. Cu–Zn–Al2O3 nanocomposites: Study of microstructure, corrosion, and wear properties. Int J Miner Metall Mater 24(4): 462–472 (2017)

Article  Google Scholar 

Sun W T, Zhou W L, Liu J F, Fu X S, Chen G Q, Yao S. The size effect of SiO2 particles on friction mechanisms of a composite friction material. Tribol Lett 66(1): 35 (2018)

Article  Google Scholar 

Zarraga O, Ulacia I, Abete J M, Ouyang H J. Receptance based structural modification in a simple brake-clutch model for squeal noise suppression. Mech Syst Signal Process 90: 222–233 (2017)

Article  Google Scholar 

Zenebe Segu D, Hwang P. Friction control by multi-shape textured surface under pin-on-disc test. Tribol Int 91: 111–117 (2015)

Article  Google Scholar 

Xiao J K, Xiao S X, Chen J, Zhang C. Wear mechanism of Cu-based brake pad for high-speed train braking at speed of 380 km/h. Tribol Int 150: 106357 (2020)

Article  Google Scholar 

Akita Y, Abe K, Osawa Y, Goto Y, Nagasawa Y, Sugiura N, Wakamatsu S, Kosaka K. Analysis of friction coefficient variation with moisture between friction surfaces. SAE Technical Paper https://doi.org/10.4271/2016-01-0411 (2016)

Matsumori T, Goto Y, Sugiura N, Abe K, Osawa Y, Akita Y, Wakamatsu S, Okayama K, Kosaka K. Friction coefficient variation mechanism under wet condition in disk brake (variation mechanism contributing wet wear debris). SAE Int J Passeng Cars Mech Syst 9(3): 1227–1234 (2016)

Article  Google Scholar 

Budinsky T, Brooks P, Barton D. The influence of disc geometry on the centre of pressure and squeal propensity for an automotive disc brake. In EuroBrake Conference Proceedings, 2017.

Zhang P, Zhang L, Fu K X, Wu P F, Cao J W, Shijia C R, Qu X H. Fade behaviour of copper-based brake pad during cyclic emergency braking at high speed and overload condition. Wear 428-429: 10–23 (2019)

Article  Google Scholar 

Panier S, Dufrénoy P and Brémond P. Infrared characterization of thermal gradients on disc brakes[C]//Thermosense XXV. International Society for Optics and Photonics 5073: 295–302 (2003)

Google Scholar 

Quan X, Mo J L, Huang B, Tang B, Ouyang H J, Zhou Z R. Influence of the friction block shape and installation angle of high-speed train brakes on brake noise. J Tribol 142(3): 031701 (2020)

Article  Google Scholar 

Chen J G, Gao F. Temperature field and thermal stress analyses of high-speed train brake disc under pad variations. Open Mech Eng J 9(1): 371–378 (2015)

Article  Google Scholar 

Wang D W, Mo J, Liu M Q, Ouyang H, Zhou Z. Noise performance improvements and tribological consequences of a pad-on-disc system through groove-textured disc surface. Tribol Int 102: 222–236 (2016)

Article  Google Scholar 

Xiang Z Y, Mo J L, Ouyang H, Massi F, Tang B, Zhou Z R. Contact behaviour and vibrational response of a high-speed train brake friction block. Tribol Int 152: 106540 (2020)

Article  Google Scholar 

留言 (0)

沒有登入
gif