Mechanism and application of mechanical property improvements in engineering materials by pulsed magnetic treatment: A review

Davidson P A. Magnetohydrodynamics in materials processing. Annu Rev Fluid Mech 31: 273–300 (1999)

Article  Google Scholar 

Eckert S, Nikrityuk P A, Räbiger D, Eckert K, Gerbeth G. Efficient melt stirring using pulse sequences of a rotating magnetic field: Part I. Flow field in a liquid metal column. Metall Mater Trans B 38(6): 977–988 (2007)

Article  Google Scholar 

Gheorghies C, Stefanescu I I. Effects of thermomagnetic treatment on microstructure and mechanical properties of rolling bearing steel. J Iron Steel Res Int 17(9): 46–52 (2010)

Article  Google Scholar 

Wang F, Qian D S, Hua L, Mao H J, Xie L C, Song X D, Dong Z H. Effect of high magnetic field on the microstructure evolution and mechanical properties of M50 bearing steel during tempering. Mater Sci Eng A 771: 138623 (2020)

Article  Google Scholar 

San Martin D, van Dijk N H, Jiménez-Melero E, Kampert E, Zeitler U, van der Zwaag S. Real-time martensitic transformation kinetics in maraging steel under high magnetic fields. Mater Sci Eng A 527(20): 5241–5245 (2010)

Article  Google Scholar 

Dong B Q, Hou T P, Wu K M, You Z Q, Li Z H, Zhang G H, Lin H F. Low-temperature nanostructured bainite transformation: The effect of magnetic field. Mater Lett 240: 66–68 (2019)

Article  Google Scholar 

Vorob’ev R A, Dubinskii V N. Effect of treatment by a pulsed magnetic field on the hardness and fracture strength of a hypereutectoid tool steel. Phys Metals Metallogr 115(8): 805–808 (2014)

Article  Google Scholar 

Miller P C. A look at magnetic treatment of tools and wear surfaces. Tool Prod 55(12): 100–103 (1990)

Google Scholar 

Peter K. Tool life grows in mangetic fields. Mach Prod Eng 147(3762): 78–79 (1989)

Google Scholar 

Tang, X R, Wei, Z C, Jing, X W, Xu, S F, Chen, J, You, Z C. The research and application of magnetic treatment apparatus of tools. Tool Eng 29(10): 22–25 (1995) (in Chinese)

Google Scholar 

Fu L C, Zhou L P. Effect of applied magnetic field on wear behaviour of martensitic steel. J Mater Res Technol 8(3): 2880–2886 (2019)

Article  Google Scholar 

Zagoruiko N V. Effect of an electrostatic field and a pulsed magnetic field on movements of dislocations in sodium chloride. Sov Phys Crystallogr 10(1): 63 (1965)

Google Scholar 

Chebotkevich L A, Urusovskaya A A, Veter V V. Motion of dislocations under the action of a magnetic field. Kristallografiya 10(5): 688–692 (1965)

Google Scholar 

Hayashi S, Takahashi S, Yamamoto M. Magneto-plastic effect in nickel single crystals. J Phys Soc Jpn 30(2): 381–387 (1971)

Article  Google Scholar 

Al’shits V I, Darinskaya E V, Perekalina T M. Motion of dislocations in NaCl crystals under the action of a static magnetic field. Sov Phys Solid State 29(2): 265–267 (1987)

Google Scholar 

Al’shits V I, Darinskaya E V, Petrzhik E A. In situ investigation of the magnetoplastic effect in NaCl crystals by the continuous etching method. Sov Phys Solid State 33(10): 1694–1699 (1991)

Google Scholar 

Alshits V, Darinskaya E, Petrzhik E. Magnetoplastic effect in CsI and LiF crystals. Phys Solid State 35: 162–164 (1993)

Google Scholar 

Al’Shits V I, Voska R, Darinskaya E V, Petrzhik E A. Magnetoplastic effect in NaCl, LiF, and Al crystals subjected to an alternating magnetic field. Phys Solid State 35(1): 37–39 (1993)

Google Scholar 

Golovin Y I, Morgunov R B. Effect of a static magnetic field on the mobility of dislocations in NaCl single crystals. Phys Solid State 37(5): 734–739 (1995)

Google Scholar 

Al’shits V I, Darinskaya E V, Petrzhik E A. Magnetoplastic effect in aluminum single-crystals. Sov Phys Solid State 34(1): 81–83 (1992)

Google Scholar 

Al’shits V I, Darinskaya E V, Gektina I V, Lavrent’ev F F. Magnetoplastic effect in single crystals of zinc. Sov Phys Crystallogr 35(4): 597–598 (1990)

Google Scholar 

Alshits V I, Darinskaya E V, Petrzhik E A. Effects of magnetic fields on the dislocation unlocking from paramagnetic centers in non-magnetic crystals. Mater Sci Eng A 164(1–2): 322–326 (1993)

Article  Google Scholar 

Alshits V I, Darinskaya E V, Kazakova O L, Mikhina E Y, Petrzhik E A. Magnetoplastic effect in nonmagnetic crystals. Mater Sci Eng A 234–236: 617–620 (1997)

Article  Google Scholar 

Alshits V I, Darinskaya E V, Kazakova O L, Mikhina E Y, Petrzhik E A. Magnetoplastic effect in non-magnetic crystals and internal friction. J Alloys Compd 211–212: 548–553 (1994)

Article  Google Scholar 

Petrzhik E A, Darinskaya E V, Erofeeva S A, Raukhman M R. Effects of doping and preliminary processing on the magnetically stimulated mobility of dislocations in InSb single crystals. Phys Solid State 45(2): 266–269 (2003)

Article  Google Scholar 

Darinskaya E V, Petrzhik E A, Erofeev S A, Kisel’ V P. Magnetoplastic effect in InSb. Jetp Lett 70(4): 309–313 (1999)

Article  Google Scholar 

Yugova T G, Belov A G, Knyazev S N. Magnetoplastic effect in Te-doped GaAs single crystals. Crystallogr Rep 65(1): 7–11 (2020)

Article  Google Scholar 

Zhang X, Cai Z P. Effect of magnetic field on the nanohardness of monocrystalline silicon and its mechanism. Jetp Lett 108(1): 23–29 (2018)

Article  Google Scholar 

Wu J H, Wray P J, Garcia C I, Hua M J, Deardo A J. Image quality analysis: A new method of characterizing microstructures. ISIJ Int 45(2): 254–262 (2005)

Article  Google Scholar 

Golovin Y I, Morgunov R B, Zhulikov S E. Effect of a static magnetic field on overcoming short-range obstacles by dislocations in LiF single crystals. Phys Solid State 39(3): 430–431 (1997)

Article  Google Scholar 

Golovin Y I, Morgunov R B, Ivanov V E. In situ investigation of the effect of a magnetic field on the mobility of dislocations in deformed KCl: Ca single crystals. Phys Solid State 39(4): 550–553 (1997)

Article  Google Scholar 

Golovin Y I, Morgunov R B. Effect of a static magnetic field on the rate of plastic flow of NaCl: Ca single crystals. Phys Solid State 37(7): 1152–1153 (1995)

Google Scholar 

Golovin Y I, Kazakova O L, Morgunov R B. Mobility of dislocations in NaCl single crystals in a static magnetic field. Phys Solid State 35(5): 700–701 (1993)

Google Scholar 

Golovin Y I, Morgunov R B. Effect of a weak magnetic field on the state of structural defects and the plasticity of ionic crystals. J Exp Theor Phys 88(2): 332–341 (1999)

Article  Google Scholar 

Wu S, Lu A, Zhao H, Fang H, Tang F. Micromechanism of residual stress reduction by low frequency alternating magnetic field treatment. Mater Sci Eng A 328(1–2): 133–136 (2002)

Article  Google Scholar 

Huang X Q. Research on improving bearing life by pulsed magnetic treatment. Ph.D. Thesis. Beijing (China): Tsinghua University, 2011

Google Scholar 

Cai Z P, Lin J A, Zhou L A, Zhao H Y. Evaluation of effect of magnetostriction on residual stress relief by pulsed magnetic treatment. Mater Sci Technol 20(12): 1563–1566 (2004)

Article  Google Scholar 

Nabarro F N. Dislocations in a simple cubic lattice. Proc Phys Soc 59(2): 256–272 (1947)

Article  MathSciNet  Google Scholar 

Akram S, Babutskyi A, Chrysanthou A, Montalvão D, Pizúrová N. (2019)Effect of alternating magnetic field on the fatigue behaviour of EN8 steel and 2014-T6 aluminium alloy. Metals 9(9): 984 (2019)

Article  Google Scholar 

Xu Q D, Li K J, Cai Z P, Wu Y. Effect of pulsed magnetic field on the microstructure of TC4 titanium alloy and its mechanism. Acta Metall Sin 55(4): 489–495 (2019)

Google Scholar 

Vespucci S, Winkelmann A, Naresh-Kumar G, Mingard K P, Maneuski D, Edwards P R, Day A P, O’Shea V, Trager-Cowan C. Digital direct electron imaging of energy-filtered electron backscatter diffraction patterns. Phys Rev B 92(20): 205301 (2015)

Article  Google Scholar 

Zhang X, Zhao Q A, Cai Z P, Pan J L. Effects of magnetic field on the residual stress and structural defects of Ti-6Al-4V. Metals 10(1): 141 (2020)

Article  Google Scholar 

Qian C K, Li K J, Rui S S, Hou M, Zhang X, Wu Y, Cai Z P. Magnetic induced re-dissolution and microstructure modifications on mechanical properties of Cr4Mo4V steel subjected to pulsed magnetic treatment. J Alloys Compd 881: 160471 (2021)

Article  Google Scholar 

Jin Y, Chao Y S, Liu F, Wang J G, Sun M T. Nanocrystallization and magnetostriction coefficient of Fe52Co34Hf7B6Cu1 amorphous alloy treated by medium-frequency magnetic pulse. J Magn Magn Mater 468: 181–184 (2018)

Article  Google Scholar 

Chao Y S, Zhang Y H, Guo H, Zhang L, Wang X G. Low temperature nano crystallization of Fe78Si9B13 amorphous alloy treated by low-frequency magnetic pulsing. Acta Metall Sin 43(3): 231–234 (2007)

Google Scholar 

Qian C K, Liu Q, Xiong X Y, Ye B J, Li Z Y, Li K J, Ying S J, Zhang H J, Huang D M, Zhang X, et al. Mechanism for magnetic field induced structural relaxation and accompanying fracture toughness improvement of the thermal spraying coating. Mater Des 223: 111113 (2022)

Article  Google Scholar 

Balluffi R W, Brokman A, King A H. CSL/DSC Lattice model for general crystalcrystal boundaries and their line defects. Acta Metall 30(8): 1453–1470 (1982)

Article  Google Scholar 

Hou M D. Research of magnetic field treatment on the partial mechanical properties of M50 bearing steel. Master Thesis. Beijing (China): Tsinghua University, 2020

Google Scholar 

Csanádi T, Vojtko M, Dusza J. Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests. Int J Refract Met Hard Mater 87: 105163 (2020)

Article 

留言 (0)

沒有登入
gif