L*—An index for evaluating long range performance of autonomous underwater vehicles (AUVs)

Wynn R B, Huvenne V A I, Le Bas T P, Murton B J, Connelly D P, Bett B J, Ruhl H A, Morris K J, Peakall J, Parsons D R, et al. Autonomous underwater vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar Geol 352: 451–468 (2014)

Article  Google Scholar 

Williams S B, Pizarro O, Steinberg D M, Friedman A, Bryson M. Reflections on a decade of autonomous underwater vehicles operations for marine survey at the Australian Centre for Field Robotics. Annu Rev Control 42: 158–165 (2016)

Article  Google Scholar 

Sahoo A, Dwivedy S K, Robi P S. Advancements in the field of autonomous underwater vehicle. Ocean Eng 181: 145–160 (2019)

Google Scholar 

Sun T S, Chen G Y, Yang S Q, Wang Y H, Wang Y Z, Tan H, Zhang L H. Design and optimization of a bio-inspired hull shape for AUV by surrogate model technology. Eng Appl Comp Fluid 15(1): 1057–1074 (2021)

Google Scholar 

Zeng Z, Lian L, Sammut K, He F P, Tang Y H, Lammas A. A survey on path planning for persistent autonomy of autonomous underwater vehicles. Ocean Eng 110: 303–313 (2015)

Article  Google Scholar 

Meng L S, Yang L, Su T C, Gu H T. Study on the influence of porous material on underwater vehicle’s hydrodynamic characteristics. Ocean Eng 191: 106528 (2019)

Article  Google Scholar 

He S Y, Jin S B, Chen J Q, Wang D, Wei Y S. Hydrodynamic design and analysis of a hybrid-driven underwater vehicle with ultra-wide speed range. Ocean Eng 264: 112494 (2022)

Article  Google Scholar 

Li S, Liu J, Xu H X, Zhao H Y, Wang Y Q. Research status of autonomous underwater vehicles in China. Sci Sin Informationis 48(9): 1152–1164 (2018) (in Chinese)

Article  Google Scholar 

Liu Y H, Yu Z J, Zhang L H, Liu T T, Feng D X, Zhang J K. A fine drag coefficient model for hull shape of underwater vehicles. Ocean Eng 236: 109361 (2021)

Article  Google Scholar 

Sener M Z, Aksu E. The effects of head form on resistance performance and flow characteristics for a streamlined AUV hull design. Ocean Eng 257: 111630 (2022)

Article  Google Scholar 

Furlong M E, Paxton D, Stevenson P, Pebody M, McPhail S D, Perrett J. Autosub long range: A long range deep diving AUV for ocean monitoring. In: Proceedings of the IEEE/OES Autonomous Underwater Vehicles (AUV). Southampton, UK, 2012: 1–7.

Google Scholar 

Roper D, Harris C A, Salavasidis G, Pebody M, Templeton R, Prampart T, Kingsland M, Morrison R, Furlong M, Phillips A B, et al. Autosub long range 6000: A multiple-month endurance AUV for deep-ocean monitoring and survey. IEEE J Oceanic Eng 46(4): 1179–1191 (2021)

Article  Google Scholar 

Navy U S. The navy unmanned undersea vehicle master plan. Report. Department of the Navy, USA, 2004.

Google Scholar 

Information on https://www2.whoi.edu/site/sciboticslab/projects/remus-sharkcam/sharkcam-more-info/, 2024.

Information on https://www2.whoi.edu/site/osl/vehicles/remus-100/, 2024. au[16]_Information on https://gdmissionsystems.com/products/underwater-vehicles/bluefin-9-autonomous-underwatervehicle, 2024.

Hobson B W, Bellingham J G, Kieft B, McEwen R, Godin M, Zhang Y W. Tethys-class long range AUVs—Extending the endurance of propeller-driven cruising AUVs from days to weeks. In: Proceedings of the IEEE/OES Autonomous Underwater Vehicles (AUV), Southampton, UK, 2012: 1–8.

Google Scholar 

Information on https://www2.whoi.edu/site/osl/vehicles/remus-3000/, 2024.

Information on https://www2.whoi.edu/site/osl/vehicles/remus-600/, 2024.

Information on https://gdmissionsystems.com, 2024.

Information on https://gdmissionsystems.com/products/underwater-vehicles/bluefin-12-unmanned-underwater-vehicle, 2024.

Chen Q, Zhang L G. Analysis of current situational development trend of US military UUV. Ship Sci Technol 32(7): 129–134 (2010) (in Chinese)

Google Scholar 

Information on https://www2.whoi.edu/site/osl/vehicles/remus-6000/, 2024.

Information on https://gdmissionsystems.com/products/underwater-vehicles/bluefin-21-autonomous-underwater-vehicle, 2024.

Information on https://www.mbari.org/technology/seafloormapping-auv/, 2024.

Zhong H W, Li G L, Song L H, Mo C J. Development of large displacement unmanned undersea vehicle in foreign countries: A review. J Unmanned Undersea Syst 26(4): 273–282 (2018) (in Chinese)

Google Scholar 

Information on https://www.naval-technology.com/projects/proteus-dual-mode-underwater-vehicle/, 2024.

Information on https://www.msubs.com/unmanned-submersibles/must/, 2024.

Information on https://ise.bc.ca/product/theseus-auv/, 2024.

Information on https://www.kongsberg.com/maritime/products/marine-robotics/autonomous-underwater-vehicles/AUVhugin-superior/, 2024.

Information on https://www.kongsberg.com, 2024.

Information on https://www.kongsberg.com/maritime/products/marine-robotics/autonomous-underwater-vehicles/autonomous-underwater-vehicle-hugin-endurance/, 2024.

Fu J Z, Tao Y R. Unmanned anti-mine cutting-edge weapon—Swedish AUV62MR autonomous underwater vehicle and anti-mine combat. Modern Ship 420(12): 44–47 (2010) (in Chinese)

Google Scholar 

Information on https://www.saab.com/products/auv62-at, 2024.

Roper D T, Phillips A B, Harris C A, Salavasidis G, Pebody M, Templeton R, Amma S V S, Smart M, McPhail S. Autosub long range 1500: An ultra-endurance AUV with 6000 km range. In: Proceedings of the OCEANS 2017-Aberdeen, Aberdeen, UK, 2017: 1–5

Google Scholar 

McPhail S D, Furlong M E, Pebody M, Perrett J R, Stevenson P, Webb A, White D. Exploring beneath the PIG ice shelf with the Autosub3 AUV. In: Proceedings of the OCEANS 2009-Europe. Bremen, Germany. 2009: 1–8.

Google Scholar 

Information on https://www.msubs.com/unmanned-submersibles/mastt/, 2024.

Information on http://www.teledynemarine.com/gavia-auv, 2024.

Information on http://www.teledynemarine.com/osprey-auv, 2024.

Information on http://www.teledynemarine.com/searaptor-auv, 2024.

Information on http://www.tjhhlf.com/sys-pd/33.html, 2024.

Information on http://www.tjhhlf.com/sys-pd/156.html, 2024.

Information on http://www.tjhhlf.com/sys-pd/49.html, 2024.

Information on http://www.tjhhlf.com/sys-pd/36.html, 2024.

Li Y P, Yan K C. “CR-02” AUV used in point-survey. Robot (4): 359–362 (2003) (in Chinese)

Google Scholar 

Information on http://www.tjhhlf.com/sys-pd/159.html, 2024.

Information on http://www.sia.cas.cn/kycg/cgzh/202008/t20200827_5677598.html, 2024.

Information on https://www.atlas-elektronik.com/solutions/mine-warfare-systems/seacat.html, 2024.

Information on http://haiying.cssc.net.cn/component_product_center/news_detail.php?id=106, 2024.

Zhong H W. Review and prospect of equipment and techniques for unmanned undersea vehicle in foreign countries. J Unmanned Undersea Syst 25(3): 215–225 (2017) (in Chinese)

Google Scholar 

Copros T, Scourzic D. Alister—Rapid environment assessment AUV (autonomous underwater vehicle). In: Proceedings of the Global Change: Mankind-Marine Environment Interactions, Dordrecht, Netherlands, 2010: 233–238.

Chapter  Google Scholar 

Desa E, Madhan R, Maurya P, Navelkar G S, Mascarenhas A A M Q, Prabhudesai S P, Afzulpurkar S, Bandodkar S N. The small Maya AUV—Initial field results. Ocean Syst Eng 11, 6–9 (2007)

Google Scholar 

Nagahashi K, Obra T, Ura T, Sakamaki T. Autonomous underwater vehicle “R2D4”—Autonomous route change system in response to environmental anomaly. In: Proceedings of the 2003 International Conference Physics and Control, Tokyo, Japan. 2003: 152–155.

Google Scholar 

Zhu M F, Ma L R, Luo J B. Research progress in surface properties of propeller and the scientific challenges. Bulletin of National Natural Science Foundation of China 35(2): 213–222 (2021) (in Chinese)

Google Scholar 

Holmberg K, Erdemir A. Influence of tribology on global energy consumption, costs and emissions. Friction 5(3): 263–284 (2017)

Article  Google Scholar 

Luo J B, Zhou X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 8(4): 643–665 (2020)

Article  Google Scholar 

Luo J B, Liu M, Ma L R. Origin of friction and the new frictionless technology—Superlubricity: Advancements and future outlook. Nano Energy 86: 106092 (2021)

Article  Google Scholar 

Sagraloff N, Dobler A, Tobie T, Stahl K, Ostrowski J. Development of an oil free water-based lubricant for gear applications. Lubricants 7(4): 33 (2019)

Article  Google Scholar 

Yilmaz M, Mirza M, Lohner T, Stahl K. Superlubricity in EHL contacts with water-containing gear fluids. Lubricants 7(5): 46 (2019)

Article  Google Scholar 

Mutyala K C, Doll G L, Wen J G, Sumant A V. Superlubricity in rolling/sliding contacts. Appl Phys Lett 115(10): 103103 (2019)

Article  Google Scholar 

Divsalar K. Improving the hydrodynamic performance of the SUBOFF bare hull model: A CFD approach. Acta Mech Sin 36(1): 44–56 (2020)

Article  Google Scholar 

Liu M, Ma L R. Drag reduction methods at solid—liquid interfaces. Friction 10(4): 491–515 (2022)

Article  Google Scholar 

Monfared Mosghani M, Ali Alidoostan M, Binesh A. Numerical analysis of drag reduction of fish scales inspired Ctenoid-shape microstructured surfaces. Chem Eng Commun 210(6): 970–985 (2023)

Article  Google Scholar 

Panda J P, Warrior H V. Numerical studies on drag reduction of an axisymmetric body of revolution with antiturbulence surface. J Offshore Mech Arct 143(6): 064501 (2021)

Article  Google Scholar 

Zhang S S, Ouyang X, Li J, Gao S, Han S H, Liu L H, Wei H. Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31(1): 587–593 (2015)

Article  Google Scholar 

Gose J W, Golovin K, Boban M, Tobelmann B, Callison E, Barros J, Schultz M P, Tuteja A, Perlin M, Ceccio S L. Turbulent skin friction reduction through the application of superhydrophobic coatings to a towed submerged SUBOFF body. J Ship Res 65(3): 266–274 (2021)

Article  Google Scholar 

Wang B, Wang J D, Chen D R, Sun N, Wang T. Experimental investigation on underwater drag reduction using partial cavitation. Chin Phys B 26(5): 054701 (2017)

Article 

留言 (0)

沒有登入
gif