Neuronal maturation and axon regeneration: unfixing circuitry to enable repair

He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).

Article  CAS  PubMed  Google Scholar 

Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023).

Article  CAS  PubMed  Google Scholar 

Björklund, A. Long distance axonal growth in the adult central nervous system. J. Neurol. 242, S33–S35 (1994).

Article  PubMed  Google Scholar 

Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, X., Terman, J. & Martin, G. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. J. Comp. Neurol. 398, 83–97 (1998).

Article  CAS  PubMed  Google Scholar 

Ruven, C. et al. Long-distance axon growth ability of corticospinal neurons is lost in a segmentally-distinct manner. Preprint in bioRxiv https://doi.org/10.1101/2022.03.20.484375 (2022). Using a novel microsurgical approach to lesion axons in the developing mouse, this preprint reports that neurons lose the ability to regenerate as they transition from elongating to arborizing axons during early postnatal development.

Article  Google Scholar 

Mahar, M. & Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323–337 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapeutics 15, 529–540 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Blanquie, O. & Bradke, F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51, 60–69 (2018).

Article  CAS  PubMed  Google Scholar 

Bradke, F., Di Giovanni, S. & Fawcett, J. Neuronal maturation: challenges and opportunities in a nascent field. Trends Neurosci. 43, 360–362 (2020).

Article  CAS  PubMed  Google Scholar 

Fawcett, J. W. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 45, 144–158 (2020).

Article  CAS  PubMed  Google Scholar 

Hilton, B. J. et al. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51–69.e7 (2022). Core molecular components of the presynaptic active zone with a limited role in axon growth during neuronal development play a major role in preventing axon growth and regeneration in mature neurons.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hollville, E., Romero, S. E. & Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J. 286, 3276–3298 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schelski, M. & Bradke, F. Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. 84, 11–28 (2017).

Article  CAS  PubMed  Google Scholar 

Coles, C. H. & Bradke, F. Coordinating neuronal actin–microtubule dynamics. Curr. Biol. 25, R677–R691 (2015).

Article  CAS  PubMed  Google Scholar 

Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2023).

Article  PubMed  Google Scholar 

Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269 (2004).

Article  CAS  PubMed  Google Scholar 

Fouad, K., Pedersen, V., Schwab, M. E. & Brösamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 11, 1766–1770 (2001).

Article  CAS  PubMed  Google Scholar 

Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020). Neonatal microglia resolve inflammation by secreting peptidase inhibitors to prevent fibrotic scarring and enable robust repair following spinal cord injury.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811 (2010).

Article  CAS  PubMed  Google Scholar 

Vinopal, S. et al. Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron 111, 1241–1263.e16 (2023). This study shows how the two interwoven dynamic processes — radial migration and axon growth — are separately controlled: by selective dependence of centrosomal and acentrosomal microtubule nucleation.

Article  CAS  PubMed  Google Scholar 

Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).

Article  CAS  PubMed  Google Scholar 

O’Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1, 901–910 (1988).

Article  PubMed  Google Scholar 

Stanfield, B. B., O’Leary, D. D. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982).

Article  CAS  PubMed  Google Scholar 

Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009).

Article  CAS  PubMed  Google Scholar 

Kano, M. et al. Persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking mGluR1. Neuron 18, 71–79 (1997).

Article  CAS  PubMed  Google Scholar 

Caceres, A., Ye, B. & Dotti, C. G. Neuronal polarity: demarcation, growth and commitment. Curr. Opin. Cell Biol. 24, 547–553 (2012).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif