He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016).
Article CAS PubMed Google Scholar
Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023).
Article CAS PubMed Google Scholar
Björklund, A. Long distance axonal growth in the adult central nervous system. J. Neurol. 242, S33–S35 (1994).
Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012).
Article CAS PubMed PubMed Central Google Scholar
Wang, X., Terman, J. & Martin, G. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. J. Comp. Neurol. 398, 83–97 (1998).
Article CAS PubMed Google Scholar
Ruven, C. et al. Long-distance axon growth ability of corticospinal neurons is lost in a segmentally-distinct manner. Preprint in bioRxiv https://doi.org/10.1101/2022.03.20.484375 (2022). Using a novel microsurgical approach to lesion axons in the developing mouse, this preprint reports that neurons lose the ability to regenerate as they transition from elongating to arborizing axons during early postnatal development.
Mahar, M. & Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323–337 (2018).
Article CAS PubMed PubMed Central Google Scholar
Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapeutics 15, 529–540 (2018).
Article PubMed PubMed Central Google Scholar
Blanquie, O. & Bradke, F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51, 60–69 (2018).
Article CAS PubMed Google Scholar
Bradke, F., Di Giovanni, S. & Fawcett, J. Neuronal maturation: challenges and opportunities in a nascent field. Trends Neurosci. 43, 360–362 (2020).
Article CAS PubMed Google Scholar
Fawcett, J. W. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 45, 144–158 (2020).
Article CAS PubMed Google Scholar
Hilton, B. J. et al. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51–69.e7 (2022). Core molecular components of the presynaptic active zone with a limited role in axon growth during neuronal development play a major role in preventing axon growth and regeneration in mature neurons.
Article CAS PubMed PubMed Central Google Scholar
Hollville, E., Romero, S. E. & Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J. 286, 3276–3298 (2019).
Article CAS PubMed PubMed Central Google Scholar
Schelski, M. & Bradke, F. Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. 84, 11–28 (2017).
Article CAS PubMed Google Scholar
Coles, C. H. & Bradke, F. Coordinating neuronal actin–microtubule dynamics. Curr. Biol. 25, R677–R691 (2015).
Article CAS PubMed Google Scholar
Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2023).
Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269 (2004).
Article CAS PubMed Google Scholar
Fouad, K., Pedersen, V., Schwab, M. E. & Brösamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 11, 1766–1770 (2001).
Article CAS PubMed Google Scholar
Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020). Neonatal microglia resolve inflammation by secreting peptidase inhibitors to prevent fibrotic scarring and enable robust repair following spinal cord injury.
Article CAS PubMed PubMed Central Google Scholar
Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811 (2010).
Article CAS PubMed Google Scholar
Vinopal, S. et al. Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron 111, 1241–1263.e16 (2023). This study shows how the two interwoven dynamic processes — radial migration and axon growth — are separately controlled: by selective dependence of centrosomal and acentrosomal microtubule nucleation.
Article CAS PubMed Google Scholar
Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).
Article CAS PubMed Google Scholar
O’Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1, 901–910 (1988).
Stanfield, B. B., O’Leary, D. D. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982).
Article CAS PubMed Google Scholar
Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018).
Article PubMed PubMed Central Google Scholar
Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012).
Article PubMed PubMed Central Google Scholar
Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004).
Article CAS PubMed PubMed Central Google Scholar
Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011).
Article CAS PubMed PubMed Central Google Scholar
Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009).
Article CAS PubMed Google Scholar
Kano, M. et al. Persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking mGluR1. Neuron 18, 71–79 (1997).
Article CAS PubMed Google Scholar
Caceres, A., Ye, B. & Dotti, C. G. Neuronal polarity: demarcation, growth and commitment. Curr. Opin. Cell Biol. 24, 547–553 (2012).
留言 (0)