Cardiac MRI in heart failure with preserved ejection fraction

Ma C, Luo H, Fan L, Liu X, Gao C (2020) Heart failure with preserved ejection fraction: an update on pathophysiology, diagnosis, treatment, and prognosis. Braz J Med Biol Res 53(7):e9646. https://doi.org/10.1590/1414-431X20209646

Article  PubMed  PubMed Central  Google Scholar 

Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Group ESCSD (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. https://doi.org/10.1093/eurheartj/ehw128

Article  PubMed  Google Scholar 

McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, Group ESCSD (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42(36):3599–3726. https://doi.org/10.1093/eurheartj/ehab368

Article  PubMed  Google Scholar 

Vega-Adauy J, Tok OO, Celik A, Barutcu A, Vannan (2021) Comprehensive Assessment of Heart Failure with Preserved Ejection Fraction Using Cardiac MRI. Heart Fail Clin. https://doi.org/10.1016/j.hfc.2021.03.006

Article  PubMed  Google Scholar 

Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14(10):591–602. https://doi.org/10.1038/nrcardio.2017.65

Article  PubMed  Google Scholar 

Pieske B, Tschope C, de Boer RA, Fraser AG, Anker SD, Donal E, Edelmann F, Fu M, Guazzi M, Lam CSP, Lancellotti P, Melenovsky V, Morris DA, Nagel E, Pieske-Kraigher E, Ponikowski P, Solomon SD, Vasan RS, Rutten FH, Voors AA, Ruschitzka F, Paulus WJ, Seferovic P, Filippatos G (2020) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail 22(3):391–412. https://doi.org/10.1002/ejhf.1741

Article  PubMed  Google Scholar 

Kanagala P, Cheng ASH, Singh A, McAdam J, Marsh AM, Arnold JR, Squire IB, Ng LL, McCann GP (2018) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in heart failure with preserved ejection fraction - implications for clinical trials. J Cardiovasc Magn Reson 20(1):4. https://doi.org/10.1186/s12968-017-0424-9

Article  PubMed  PubMed Central  Google Scholar 

Xanthopoulos A, Triposkiadis F, Starling RC (2018) Heart failure with preserved ejection fraction: classification based upon phenotype is essential for diagnosis and treatment. Trends Cardiovasc Med 28(6):392–400. https://doi.org/10.1016/j.tcm.2018.01.001

Article  PubMed  Google Scholar 

Chamsi-Pasha MA, Zhan Y, Debs D, Shah (2020) CMR in the Evaluation of Diastolic Dysfunction and Phenotyping of HFpEF: current role and future perspectives. JACC Cardiovasc Imag. https://doi.org/10.1016/j.jcmg.2019.02.031

Article  Google Scholar 

Zawadzka MM, Grabowski M, Kaplon-Cieslicka A (2022) Phenotyping in heart failure with preserved ejection fraction: a key to find effective treatment. Adv Clin Exp Med. https://doi.org/10.17219/acem/149728

Article  PubMed  Google Scholar 

Webb J, Fovargue L, Tondel K, Porter B, Sieniewicz B, Gould J, Rinaldi CA, Ismail T, Chiribiri A, Carr-White G (2018) The emerging role of cardiac magnetic resonance imaging in the evaluation of patients with HFpEF. Curr Heart Fail Rep 15(1):1–9. https://doi.org/10.1007/s11897-018-0372-1

Article  PubMed  PubMed Central  Google Scholar 

Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11(9):507–515. https://doi.org/10.1038/nrcardio.2014.83

Article  PubMed  Google Scholar 

Bojer AS, Soerensen MH, Gaede P, Myerson S, Madsen PL (2021) Left ventricular diastolic function studied with magnetic resonance imaging: a systematic review of techniques and relation to established measures of diastolic function. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11071282

Article  PubMed  Google Scholar 

Bernard PP, Albert JJB, Johan MB, Rob J, Dominique D, Paul MP, Christiaan JV, Hildo JL (2005) Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol 45(7):1109–1116. https://doi.org/10.1016/j.jacc.2004.12.051

Article  Google Scholar 

Caudron J, Fares J, Bauer F, Dacher JN (2011) Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics 31(1):239–259. https://doi.org/10.1148/rg.311105049

Article  PubMed  Google Scholar 

Westenberg JJ (2011) CMR for assessment of diastolic function. Curr Cardiovasc Imaging Rep 4(2):149–158. https://doi.org/10.1007/s12410-011-9070-z

Article  PubMed  PubMed Central  Google Scholar 

Paelinck BP, de Roos A, Bax JJ, Bosmans JM, van Der Geest RJ, Dhondt D, Parizel PM, Vrints CJ, Lamb HJ (2005) Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol 45(7):1109–1116. https://doi.org/10.1016/j.jacc.2004.12.051

Article  PubMed  Google Scholar 

Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, Vido D, Biederman RW (2008) Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson 10:36. https://doi.org/10.1186/1532-429X-10-36

Article  PubMed  PubMed Central  Google Scholar 

Buss SJ, Krautz B, Schnackenburg B, Abdel-Aty H, Santos MF, Andre F, Maertens MJ, Mereles D, Korosoglou G, Giannitsis E, Katus HA, Steen H (2014) Classification of diastolic function with phase-contrast cardiac magnetic resonance imaging: validation with echocardiography and age-related reference values. Clin Res Cardiol 103(6):441–450. https://doi.org/10.1007/s00392-014-0669-3

Article  PubMed  Google Scholar 

Shehata ML, Cheng S, Osman NF, Bluemke DA, Lima JA (2009) Myocardial tissue tagging with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 11:55. https://doi.org/10.1186/1532-429X-11-55

Article  PubMed  PubMed Central  Google Scholar 

Cao JJ, Ngai N, Duncanson L, Cheng J, Gliganic K, Chen Q (2018) A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J Cardiovasc Magnet Reson. https://doi.org/10.1186/s12968-018-0448-9

Article  Google Scholar 

Simpson RM, Keegan J, Firmin DN (2013) MR assessment of regional myocardial mechanics. J Magn Reson Imaging 37(3):576–599. https://doi.org/10.1002/jmri.23756

Article  PubMed  Google Scholar 

Ibrahim E-SH (2011) Myocardial tagging by Cardiovascular Magnetic Resonance: evolution of techniques–pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson 13(1):36. https://doi.org/10.1186/1532-429x-13-36

Article  PubMed  PubMed Central  Google Scholar 

Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, Salerno M, Teague SD, Valsangiacomo-Buechel E, van der Geest RJ, Bluemke DA (2020) Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 22(1):87. https://doi.org/10.1186/s12968-020-00683-3

Article  PubMed  PubMed Central  Google Scholar 

Onishi T, Saha SK, Delgado-Montero A, Ludwig DR, Onishi T, Schelbert EB, Schwartzman D, Gorcsan J 3rd (2015) Global longitudinal strain and global circumferential strain by speckle-tracking echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with left ventricular ejection fraction. J Am Soc Echocardiogr 28(5):587–596. https://doi.org/10.1016/j.echo.2014.11.018

Article  PubMed  Google Scholar 

Ito H, Ishida M, Makino W, Goto Y, Ichikawa Y, Kitagawa K, Omori T, Dohi K, Ito M, Sakuma H (2020) Cardiovascular magnetic resonance feature tracking for characterization of patients with heart failure with preserved ejection fraction: correlation of global longitudinal strain with invasive diastolic functional indices. J Cardiovasc Magn Reson 22(1):42. https://doi.org/10.1186/s12968-020-00636-w

Article  PubMed  PubMed Central  Google Scholar 

Kammerlander AA, Kraiger JA, Nitsche C, Dona C, Duca F, Zotter-Tufaro C, Binder C, Aschauer S, Loewe C, Hengstenberg C, Bonderman D, Mascherbauer J (2019) Global longitudinal strain by CMR feature tracking is associated with outcome in HFPEF. JACC Cardiovasc Imaging 12(8 Pt 1):1585–1587. https://doi.org/10.1016/j.jcmg.2019.02.016

Article  PubMed  Google Scholar 

Tadic M, Pieske-Kraigher E, Cuspidi C, Genger M, Morris DA, Zhang K, Walther NA, Pieske B (2017) Left ventricular strain and twisting in heart failure with preserved ejection fraction: an updated review. Heart Fail Rev 22(3):371–379. https://doi.org/10.1007/s10741-017-9618-3

留言 (0)

沒有登入
gif