Behavioural and neurodevelopmental characteristics of SYNGAP1

Fitzgerald TW, Gerety SS, Jones WD, Van Kogelenberg M, King DA, McRae J, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–8. Available from: https://pubmed.ncbi.nlm.nih.gov/25533962/.

Kim JH, Liao D, Lau LF, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron. 1998;20:683–91. Available from: https://pubmed.ncbi.nlm.nih.gov/9581761/.

Gamache TR, Araki Y, Huganir RL. Twenty Years of SynGAP Research: From Synapses to Cognition. J Neurosci. 2020;40:1596–605. Available from: https://www.jneurosci.org/content/40/8/1596.

Llamosas N, Arora V, Vij R, Kilinc M, Bijoch L, Rojas C, et al. SYNGAP1 Controls the Maturation of Dendrites, Synaptic Function, and Network Activity in Developing Human Neurons. J Neurosci. 2020;40:7980.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aceti M, Creson TK, Vaissiere T, Rojas C, Huang WC, Wang YX, et al. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol Psychiatry. 2015;77:805–15. Available from: https://pubmed.ncbi.nlm.nih.gov/25444158/.

Tomoda T, Kim JH, Zhan C, Hatten ME. Role of Unc51.1 and its binding partners in CNS axon outgrowth. Genes Dev. 2004;18:541.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Komiyama NH, Watabe AM, Carlisle HJ, Porter K, Charlesworth P, Monti J, et al. SynGAP regulates ERK/MAPK signaling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22:9721–32. Available from: https://pubmed.ncbi.nlm.nih.gov/12427827/.

Lloyd Holder J, Hamdan FF, Michaud JL. SYNGAP1-Related Intellectual Disability. GeneReviews®. 2019 [cited 2023 Sep 4]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK537721/.

Vlaskamp DRM, Shaw BJ, Burgess R, Mei D, Montomoli M, Xie H, et al. SYNGAP1 encephalopathy: A distinctive generalized developmental and epileptic encephalopathy. Neurology. 2019;92:E96–107. Available from: https://pubmed.ncbi.nlm.nih.gov/30541864/

Mignot C, von Stülpnage C, Nava C, Ville D, Sanlaville D, Lesca G, et al. Genetic and neurodevelopmental spectrum of SYNGAP1-associated intellectual disability and epilepsy. J Med Genet. 2016;53:511–22. Available from: https://pubmed.ncbi.nlm.nih.gov/26989088/.

Weldon M, Kilinc M, Lloyd Holder J, Rumbaugh G. The first international conference on SYNGAP1-related brain disorders: A stakeholder meeting of families, researchers, clinicians, and regulators. J Neurodev Disord. 2018;10:1–6. Available from: https://doi.org/10.1186/s11689-018-9225-1.

Berryer MH, Hamdan FF, Klitten LL, Møller RS, Carmant L, Schwartzentruber J, et al. Mutations in SYNGAP1 cause intellectual disability, autism, and a specific form of epilepsy by inducing haploinsufficiency. Hum Mutat. 2013;34:385–94. Available from: https://pubmed.ncbi.nlm.nih.gov/23161826/.

Hamdan FF, Daoud H, Piton A, Gauthier J, Dobrzeniecka S, Krebs MO, et al. De novo SYNGAP1 mutations in nonsyndromic intellectual disability and autism. Biol Psychiatry. 2011;69:898–901. Available from: https://pubmed.ncbi.nlm.nih.gov/21237447/.

Hamdan FF, Gauthier J, Spiegelman D, Noreau A, Yang Y, Pellerin S, et al. Mutations in SYNGAP1 in autosomal nonsyndromic mental retardation. N Engl J Med. 2009;360:599–605. Available from: https://pubmed.ncbi.nlm.nih.gov/19196676/.

Wright D, Kenny A, Eley S, McKechanie AG, Stanfield AC. Clinical and behavioural features of SYNGAP1-related intellectual disability: a parent and caregiver description. J Neurodev Disord. 2022;14:34.

Article  PubMed  PubMed Central  Google Scholar 

Jimenez-Gomez A, Niu S, Andujar-Perez F, McQuade EA, Balasa A, Huss D, et al. Phenotypic characterization of individuals with SYNGAP1 pathogenic variants reveals a potential correlation between posterior dominant rhythm and developmental progression. J Neurodev Disord. 2019;11:1–11. Available from: https://doi.org/10.1186/s11689-019-9276-y.

Fu JM, Satterstrom FK, Peng M, Brand H, Collins RL, Dong S, et al. Rare coding variation provides insight into the genetic architecture and phenotypic context of autism. Nat Genet. 2022;54. Available from: https://pubmed.ncbi.nlm.nih.gov/35982160/.

Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell. 2020;180:568–584.e23. Available from: https://pubmed.ncbi.nlm.nih.gov/31981491/.

Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, et al. Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord. 2003;33:427–33. Available from: https://pubmed.ncbi.nlm.nih.gov/12959421/.

Naveed H, McCormack M, Holder JL. Social Behavioral Impairments in SYNGAP1-Related Intellectual Disability. medRxiv. 2023;2023.03.11.23287144. Available from: https://doi.org/10.1101/2023.03.11.23287144v1.

McIntosh DN, Miller LJ, Shyu V, Dunn W. Development and validation of the short sensory profile. Sensory Profile User Manual. 1999;61:59–73.

Google Scholar 

Lyons-Warren AM, McCormack MC, Holder JL. Sensory Processing Phenotypes in Phelan-McDermid Syndrome and SYNGAP1-Related Intellectual Disability. Brain Sci 2022;12:137. Available from: https://www.mdpi.com/2076-3425/12/2/137/htm.

Wolstencroft J, Wicks F, Srinivasan R, Wynn S, Ford T, Baker K, et al. Neuropsychiatric risk in children with intellectual disability of genetic origin: IMAGINE, a UK national cohort study. The Lancet Psychiatry. 2022;9:715–24. Available from: https://www.gov.uk/.

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24. Available from: https://pubmed.ncbi.nlm.nih.gov/25741868/.

Emerson E, Hatton C. Mental health of children and adolescents with intellectual disabilities in Britain. Br J Psychiatry. 2007;191:493–9. Available from: https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/mental-health-of-children-and-adolescents-with-intellectual-disabilities-in-britain/55DE6D72FFD74CDE99F438C538751DB5.

Harrison PL, Oakland T. Adaptive Behavior Assessment System: Third Edition. Encycl Clin Neuropsychol. 2018;57–60. Available from: https://doi.org/10.1007/978-3-319-57111-9_1506.

Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The Development and Well-Being Assessment: Description and Initial Validation of an Integrated Assessment of Child and Adolescent Psychopathology. J Child Psychol Psychiatry. 2000;41:645–55. Available from: https://doi.org/10.1111/j.1469-7610.2000.tb02345.x.

Wolstencroft J, Srinivasan R, Hall J, Bree MBM van den, Owen MJ, Raymond FL, et al. Mental health impact of autism on families of children with intellectual and developmental disabilities of genetic origin. JCPP Adv. 2023;3:e12128. Available from: https://doi.org/10.1002/jcv2.12128.

Goodman R. Psychometric Properties of the Strengths and Difficulties Questionnaire. J Am Acad Child Adolesc Psychiatry. 2001;40:1337–45.

Article  CAS  PubMed  Google Scholar 

Nakajima R, Takao K, Hattori S, Shoji H, Komiyama NH, Grant SGN, et al. Comprehensive behavioral analysis of heterozygous Syngap1 knockout mice. Neuropsychopharmacol Reports. 2019;39:223–37.

Article  CAS  Google Scholar 

Barnett MW, Watson RF, Vitalis T, Porter K, Komiyama NH, Stoney PN, et al. Synaptic Ras GTPase Activating Protein Regulates Pattern Formation in theTrigeminal System of Mice. J Neurosci. 2006;26:1355.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Côté V, Knoth IS, Agbogba K, Vannasing P, Côté L, Major P, et al. Differential auditory brain response abnormalities in two intellectual disability conditions: SYNGAP1 mutations and Down syndrome. Clin Neurophysiol. 2021;132:1802–12.

Article  PubMed  Google Scholar 

Clement JP, Ozkan ED, Aceti M, Miller CA, Rumbaugh G. Brief Communications SYNGAP1 Links the Maturation Rate of Excitatory Synapses to the Duration of Critical-Period Synaptic Plasticity. J Neurosci. 2013;33(25):10447–52.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim JH, Lee HK, Takamiya K, Huganir RL. The Role of Synaptic GTPase-Activating Protein in Neuronal Development and Synaptic Plasticity. J Neurosci. 2003;23:1119–24. Available from: https://www.jneurosci.org/content/23/4/1119.

Clement JP, Aceti M, Creson TK, Ozkan ED, Shi Y, Reish NJ, et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell. 2012;151:709–23. Available from: https://pubmed.ncbi.nlm.nih.gov/23141534/.

Rubenstein JLR, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain Behav. 2003;2:255–67. Available from: https://doi.org/10.1034/j.1601-183X.2003.00037.x.

Creson TK, Rojas C, Hwaun E, Vaissiere T, Kilinc M, Jimenez-Gomez A, et al. Re-expression of SynGAP protein in adulthood improves translatable measures of brain function and behavior. Elife. 2019;8:e46752.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif