Evaluation of calculation accuracy and computation time in a commercial treatment planning system for accelerator-based boron neutron capture therapy

Tanaka H, Sakurai Y, Suzuki M, et al. Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instrum Methods Phys Res, Sect B. 2009;267:1970–7. https://doi.org/10.1016/j.nimb.2009.03.095.

Article  CAS  Google Scholar 

Tanaka H, Sakurai Y, Suzuki M, et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Appl Radiat Isot. 2011;69(12):1642–5. https://doi.org/10.1016/j.apradiso.2011.03.020.

Article  CAS  PubMed  Google Scholar 

Kiyanagi Y. Accelerator-based neutron source for boron neutron capture therapy. Ther Radiol Oncol. 2018;2:55.

Article  Google Scholar 

Kumada H, Naito F, Hasegawa K, et al. Development of LINAC based neutron source for boron neutron capture therapy in university of Tsukuba. Plasma Fusion Res. 2018;13:2406006. https://doi.org/10.1585/pfr.13.2406006.

Article  Google Scholar 

Kato T, Hirose K, Tanaka H, et al. Design and construction of an accelerator-based boron neutron capture therapy (AB-BNCT) facility with multiple treatment rooms at the Southern Tohoku BNCT research center. Appl Radiat Isot. 2020;156:108961. https://doi.org/10.1016/j.apradiso.2019.108961.

Article  CAS  PubMed  Google Scholar 

Zamenhof RG, Redmond E II, Solares G, et al. Monte Carlo-based treatment planning for boron neutron capture therapy using custom designed models automatically generated from CT data. Int J Radiat Oncol Biol Phys. 1996;35(2):383–97. https://doi.org/10.1016/0360-3016(96)00084-3.

Article  CAS  PubMed  Google Scholar 

Nigg DW, Wheeler FJ, Wessol DE, et al. Computational dosimetry and treatment planning for boron neutron capture therapy. J Neuro-Oncol. 1997;33:93–103. https://doi.org/10.1023/a:1005777416716.

Article  CAS  Google Scholar 

Nigg DW, Wemple CA, Wessol DE, et al. SERA—an advanced treatment planning system for neutron capture therapy and BNCT. Trans ANS. 1999;80:66–8.

Google Scholar 

Kumada H, Yamamoto K, Matsumura A, et al. Development of JCDS, a computational dosimetry system at JAEA for boron neutron capture therapy. J Phys: Conf Ser. 2007;74: 021010. https://doi.org/10.1088/1742-6596/74/1/021010.

Article  Google Scholar 

Li HS, Liu YW, Lee CY, et al. Verification of the accuracy of BNCT treatment planning system THORplan. Appl Radiat Isot. 2009;67:S122–5. https://doi.org/10.1016/j.apradiso.2009.03.029.

Article  CAS  PubMed  Google Scholar 

Kumada H, Takada K, Sakurai Y, et al. Development of a multimodal Monte Carlo based treatment planning system. Radiat Prot Dosim. 2018;180:286–90. https://doi.org/10.1093/rpd/ncx218.

Article  CAS  Google Scholar 

Chen J, Teng YC, Zhong WB, et al. Development of Monte Carlo based treatment planning system for BNCT. J Phys Conf Ser. 2022;2313(1):012012. https://doi.org/10.1088/1742-6596/2313/1/012012.

Article  Google Scholar 

Ma CMC, Chetty IJ, Deng J, et al. Beam modeling and beam model commissioning for Monte Carlo dose calculation-based radiation therapy treatment planning: report of AAPM task group 157. Med Phys. 2020;47:e1-18. https://doi.org/10.1002/mp.13898.

Article  PubMed  Google Scholar 

Hu N, Tanaka H, Kakino R, et al. Evaluation of a treatment planning system developed for clinical boron neutron capture therapy and validation against an independent Monte Carlo dose calculation system. Radiat Oncol. 2021;16:243. https://doi.org/10.1186/s13014-021-01968-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sato T, Iwamoto Y, Hashimoto S, et al. Features of particle and heavy ion transport code system (PHITS) version 3.02. J Nucl Sci Technol. 2018;55(6):684–90. https://doi.org/10.1080/00223131.2017.1419890.

Article  CAS  Google Scholar 

Furuta T, Ishikawa KL, Fukunishi N, et al. (2013) Implementation of the OpenMP and MPI hybrid parallelization to Monte Carlo dose simulation for particle therapy. IFMBE Proceedings. 39 2099–102 https://doi.org/10.1007/978-3-642-29305-4_551.

Hirose K, Kato T, Harada T, et al. Determining a methodology of dosimetric quality assurance for commercially available accelerator-based boron neutron capture therapy system. J Radiat Res. 2022;63(4):620–35. https://doi.org/10.1093/jrr/rrac030.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hisanaga S, Yamashita T, Kitamura I, et al. Investigation on thermal-neutron sensitivity of commercial BeO(Na) thermoluminescence dosimeter and development of thermal-neutron insensitive BeO(Na) phosphors encapsulated in quartz-capillary. Radioisotopes. 1990;39(9):381–5. https://doi.org/10.3769/radioisotopes.39.9_381.

Article  CAS  PubMed  Google Scholar 

Sakurai Y, Kobayashi T. Characteristics of the KUR heavy water neutron irradiation facility as a neutron irradiation field with variable energy spectra. Nucl Instrum Methods Phys Res Sect A. 2000;453(3):569–96. https://doi.org/10.1016/S0168-9002(00)00465-4.

Article  CAS  Google Scholar 

White DR, Griffith RV, Wilson IJ. ICRU Report 46: Photon, eletron, proton and neutron interaction data for body tissues. J Int Comm Rad Units Meas. 1992;os24(1):14–200.

Google Scholar 

Hiratsuka J, Fukuda H, Kobayashi T, et al. The relative biological effectiveness of 10B-neutron capture therapy for early skin reaction in the hamster. Radiat Res. 1991;128(2):186–91. https://doi.org/10.2307/3578136.

Article  CAS  PubMed  Google Scholar 

Coderre JA, Morris GM, Kalef-Ezra J, et al. The effects of boron neutron capture irradiation on oral mucosa: evaluation using a rat tongue model. Radiat Res. 1999;152(2):113–8. https://doi.org/10.2307/3580083.

Article  CAS  PubMed  Google Scholar 

Hirose K, Konno A, Hiratsuka J, et al. Boron neutron capture therapy using cyclotron-based epithermal neutron source and Borofalan(10B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial. Radiother Oncol. 2021;155:182–7. https://doi.org/10.1016/j.radonc.2020.11.001.

Article  CAS  PubMed  Google Scholar 

International Atomic Energy Agency. Advances in boron neutron capture therapy. Vienna: International Atomic Energy Agency; 2023.

Google Scholar 

Hirose K, Sato M, Kato T, et al. Profile analysis of adverse events after boron neutron capture therapy for head and neck cancer: a sub-analysis of JHN002 study. J Radiat Res. 2022;63(3):393–401. https://doi.org/10.1093/jrr/rrac012.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang LW, Chen YW, Ho CY, et al. Fractionated boron neutron capture therapy in locally recurrent head and neck cancer: a prospective phase I/II trial. Int J Radiat Oncol Biol Phys. 2016;95:396–403. https://doi.org/10.1016/j.ijrobp.2016.02.028.

Article  PubMed  Google Scholar 

Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM task group no. 105: issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Med phys. 2007;34(12):4818–53.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif