Adak S, Datta AK (2005) Leishmania major encodes an unusual peroxidase that is a close homologue of plant ascorbate peroxidase: a novel role of the transmembrane domain. Biochem J 390:465–474
Article PubMed PubMed Central CAS Google Scholar
Adasme MF, Linnemann KL, Bolz SN et al (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49:W530–W534. https://doi.org/10.1093/nar/gkab294
Article PubMed PubMed Central CAS Google Scholar
Ariyanayagam MR, Fairlamb AH (2001) Ovothiol and trypanothione as antioxidants in trypanosomatids. Mol Biochem Parasitol 115:189–198
Article PubMed CAS Google Scholar
Backman TW, Cao Y, Girke T (2011) ChemMine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res 39:W486–W491
Article PubMed PubMed Central CAS Google Scholar
Badyal SK, Eaton G, Mistry S et al (2009) Evidence for heme oxygenase activity in a heme peroxidase. Biochemistry 48:4738–4746
Article PubMed CAS Google Scholar
Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263
Article PubMed PubMed Central CAS Google Scholar
Barr SD, Gedamu L (2003) Role of peroxidoxins in Leishmania chagasisurvival: evidence of an enzymatic defense against nitrosative stress. J Biol Chem 278:10816–10823
Article PubMed CAS Google Scholar
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101. https://doi.org/10.1063/1.2408420
Article PubMed CAS Google Scholar
Castro H, Tomás AM (2008) Peroxidases of trypanosomatids. Antioxid Redox Signal 10:1593–1606
Article PubMed CAS Google Scholar
Chan J, Fujiwara T, Brennan P et al (1989) Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci 86:2453–2457
Article PubMed PubMed Central CAS Google Scholar
Channon JY, Blackwell JM (1985) A study of the sensitivity of Leishmania donovani promastigotes and amastigotes to hydrogen peroxide. II. Possible mechanisms involved in protective H2O2 scavenging. Parasitology 91:207–217
Article PubMed CAS Google Scholar
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717
Article PubMed PubMed Central Google Scholar
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397
Davies M, Nowotka M, Papadatos G et al (2015) ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res 43:W612–W620
Article PubMed PubMed Central CAS Google Scholar
Dolai S, Yadav RK, Pal S, Adak S (2009) Overexpression of mitochondrial Leishmania major ascorbate peroxidase enhances tolerance to oxidative stress-induced programmed cell death and protein damage. Eukaryot Cell 8:1721–1731. https://doi.org/10.1128/EC.00198-09
Article PubMed PubMed Central CAS Google Scholar
Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2. 0: new docking methods, expanded force field, and python bindings. J Chem Inf Model 61:3891–3898
Article PubMed PubMed Central CAS Google Scholar
Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20
Article PubMed PubMed Central CAS Google Scholar
Gelpi J, Hospital A, Goñi R, Orozco M (2015) Molecular dynamics simulations: advances and applications. AABC 37:37. https://doi.org/10.2147/AABC.S70333
Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936
Article PubMed PubMed Central CAS Google Scholar
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H
Kashif M, Paladhi A, Singh R et al (2020) Leishmanicidal activity of an in silico -screened novel inhibitor against ascorbate peroxidase of Leishmania donovani. Antimicrob Agents Chemother 64:e01766–e01819. https://doi.org/10.1128/AAC.01766-19
Article PubMed PubMed Central CAS Google Scholar
Kumar A, Das S, Purkait B et al (2014) Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 58:6172–6184
Article PubMed PubMed Central Google Scholar
Landrum G (2014) RDKit: open-source cheminformatics. Available at: https://www.rdkit.org
Miller MA, McGowan SE, Gantt KR et al (2000) Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J Biol Chem 275:33883–33889
Article PubMed CAS Google Scholar
Murray HW, Nathan CF (1999) Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J Exp Med 189:741–746
Article PubMed PubMed Central CAS Google Scholar
O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:1–14
Paissoni C, Spiliotopoulos D, Musco G, Spitaleri A (2014) GMXPBSA 2.0: a GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput Phys Commun 185:2920–2929
Pal S, Dolai S, Yadav RK, Adak S (2010) Ascorbate peroxidase from Leishmania major controls the virulence of infective stage of promastigotes by regulating oxidative stress. PLoS ONE 5:e11271
Article PubMed PubMed Central Google Scholar
Paramchuk WJ, Ismail SO, Bhatia A, Gedamu L (1997) Cloning, characterization and overexpression of two iron superoxide dismutase cDNAs from Leishmania chagasi: role in pathogenesis. Mol Biochem Parasitol 90:203–221. https://doi.org/10.1016/S0166-6851(97)00141-2
Article PubMed CAS Google Scholar
Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693
Sacks D, Kenney R, Neva F et al (1995) Indian kala-azar caused by Leishmania tropica. Lancet 345:959–961
留言 (0)