Levy G (1994) Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther 56(3):248–252. https://doi.org/10.1038/clpt.1994.134
Svilenov HL, Bester R, Sacherl J, Absmeier R, Peters C, Protzer U, Brockmeyer C, Buchner J (2022) Multimeric ACE2-IgM fusions as broadly active antivirals that potently neutralize SARS-CoV-2 variants. Commun Biol 5(1):1237. https://doi.org/10.1038/s42003-022-04193-z
Article PubMed PubMed Central Google Scholar
Schropp J, Khot A, Shah DK, Koch G (2019) Target-Mediated Drug Disposition Model for Bispecific Antibodies: Properties, Approximation, and Optimal Dosing Strategy. CPT Pharmacometrics Syst Pharmacol 8(3):177–187. https://doi.org/10.1002/psp4.12369
Article PubMed PubMed Central Google Scholar
Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L (2006) Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res 23(1):95–103. https://doi.org/10.1007/s11095-005-8814-3
Trivedi A, Stienen S, Zhu M, Li H, Yuraszeck T, Gibbs J, Heath T, Loberg R, Kasichayanula S (2017) Clinical pharmacology and translational aspects of bispecific antibodies. Clin Transl Sci 10(3):147–162. https://doi.org/10.1111/cts.12459
Article PubMed PubMed Central Google Scholar
Kaushansky K (2006) Lineage-specific hematopoietic growth factors. N Engl J Med 354(19):2034–2045. https://doi.org/10.1056/NEJMra052706
Douglass EF Jr, Miller CJ, Sparer G, Shapiro H, Spiegel DA (2013) A comprehensive mathematical model for three-body binding equilibria. J Am Chem Soc 135(16):6092–6099. https://doi.org/10.1021/ja311795d
Article PubMed PubMed Central Google Scholar
Betts A, van der Graaf PH (2020) Mechanistic quantitative pharmacology strategies for the early clinical development of bispecific antibodies in oncology. Clin Pharmacol Ther 108(3):528–541. https://doi.org/10.1002/cpt.1961
Article PubMed PubMed Central Google Scholar
Keyt BA, Baliga R, Sinclair AM, Carroll SF, Peterson MS (2020) Structure, function, and therapeutic use of IgM antibodies. Antibodies (Basel). https://doi.org/10.3390/antib9040053
Rujas E, Kucharska I, Tan YZ, Benlekbir S, Cui H, Zhao T, Wasney GA, Budylowski P, Guvenc F, Newton JC, Sicard T, Semesi A, Muthuraman K, Nouanesengsy A, Aschner CB, Prieto K, Bueler SA, Youssef S, Liao-Chan S, Glanville J, Christie-Holmes N, Mubareka S, Gray-Owen SD, Rubinstein JL, Treanor B, Julien JP (2021) Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nat Commun 12(1):3661. https://doi.org/10.1038/s41467-021-23825-2
Article PubMed PubMed Central Google Scholar
Overdijk MB, Strumane K, Beurskens FJ, Ortiz Buijsse A, Vermot-Desroches C, Vuillermoz BS, Kroes T, de Jong B, Hoevenaars N, Hibbert RG, Lingnau A, Forssmann U, Schuurman J, Parren P, de Jong RN, Breij ECW (2020) Dual epitope targeting and enhanced hexamerization by DR5 antibodies as a novel approach to induce potent antitumor activity through DR5 agonism. Mol Cancer Ther 19(10):2126–2138. https://doi.org/10.1158/1535-7163.MCT-20-0044
Mager DE, Jusko WJ (2001) General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn 28(6):507–532. https://doi.org/10.1023/a:1014414520282
Gibiansky L, Gibiansky E, Kakkar T, Ma P (2008) Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn 35(5):573–591. https://doi.org/10.1007/s10928-008-9102-8
Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596. https://doi.org/10.1007/s11095-005-6650-0
Marathe A, Krzyzanski W, Mager DE (2009) Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model. J Pharmacokinet Pharmacodyn 36(3):199–219. https://doi.org/10.1007/s10928-009-9118-8
Gibiansky L, Gibiansky E (2010) Target-mediated drug disposition model for drugs that bind to more than one target. J Pharmacokinet Pharmacodyn 37(4):323–346. https://doi.org/10.1007/s10928-010-9163-3
Ng CM, Fielder PJ, Jin J, Deng R (2016) Mechanism-Based competitive binding model to investigate the effect of neonatal fc receptor binding affinity on the pharmacokinetic of humanized anti-VEGF monoclonal IgG1 antibody in cynomolgus monkey. AAPS J 18(4):948–959. https://doi.org/10.1208/s12248-016-9911-4
Yan X, Chen Y, Krzyzanski W (2012) Methods of solving rapid binding target-mediated drug disposition model for two drugs competing for the same receptor. J Pharmacokinet Pharmacodyn 39(5):543–560. https://doi.org/10.1007/s10928-012-9267-z
Article PubMed PubMed Central Google Scholar
Wang ZX (1995) An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. FEBS Lett 360(2):111–114. https://doi.org/10.1016/0014-5793(95)00062-e
Gibiansky L, Gibiansky E (2017) Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site. J Pharmacokinet Pharmacodyn 44(5):463–475. https://doi.org/10.1007/s10928-017-9533-1
Gibiansky L, Ng CM, Gibiansky E (2024) Target-mediated drug disposition model for drugs with N > 2 binding sites that bind to a target with one binding site. J Pharmacokinet Pharmacodyn. https://doi.org/10.1007/s10928-024-09917-8
Koch G, Jusko WJ, Schropp J (2017) Target-mediated drug disposition with drug-drug interaction, Part I: single drug case in alternative formulations. J Pharmacokinet Pharmacodyn 44(1):17–26. https://doi.org/10.1007/s10928-016-9501-1
Article PubMed PubMed Central Google Scholar
Hayashi N, Tsukamoto Y, Sallas WM, Lowe PJ (2007) A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br J Clin Pharmacol 63(5):548–561. https://doi.org/10.1111/j.1365-2125.2006.02803.x
Schwarz G (1978) Estimating the dimension of a model. Ann Statistics. https://doi.org/10.1214/aos/1176344136
Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavare R, Ullman E, Mao S, Canova L, Sineshchekova O, Finney J, Pawashe A, Patel S, McKay R, Rizvi S, Damko E, Chiu D, Vazzana K, Ram P, Mohrs K, D’Orvilliers A, Xiao J, Makonnen S, Hickey C, Arnold C, Giurleo J, Chen YP, Thwaites C, Dudgeon D, Bray K, Rafique A, Huang T, Delfino F, Hermann A, Kirshner JR, Retter MW, Babb R, MacDonald D, Chen G, Olson WC, Thurston G, Davis S, Lin JC, Smith E (2021) Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 11(1):14397. https://doi.org/10.1038/s41598-021-93842-0
Article PubMed PubMed Central Google Scholar
Ginaldi L, Matutes E, Farahat N, De Martinis M, Morilla R, Catovsky D (1996) Differential expression of CD3 and CD7 in T-cell malignancies: a quantitative study by flow cytometry. Br J Haematol 93(4):921–927. https://doi.org/10.1046/j.1365-2141.1996.d01-1720.x
Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372(6504):379–383. https://doi.org/10.1038/372379a0
Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7(9):715–725. https://doi.org/10.1038/nri2155
Hansen RJ, Balthasar JP (2003) Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92(6):1206–1215. https://doi.org/10.1002/jps.10364
留言 (0)