Personalized Medicine in Orbital Surgery

Joseph JM, Glavas IP. Orbital Fractures: a review. Clin Ophthalmol. 2011;5:95–100. https://doi.org/10.2147/OPTH.S14972.

Article  PubMed  PubMed Central  Google Scholar 

Basta MN, Rao V, Roussel LO, Crozier JW, Liu PY, Woo AS. Refining Indications for Orbital Floor Fracture Reconstruction: A Risk-Stratification Tool Predicting Symptom Development and Need for Surgery. Plastic and Reconstructive Surgery. 2021 Sep 148(3):606–15; https://doi.org/10.1097/PRS.0000000000008292. This article details features of fractures that are likely to be symptomatic.

Mo YW, Kim SW, Shin HK. Prediction of late enophthalmos using quantitative measures in isolated medial orbital wall fracture: multiple regression analysis. J Plast Reconstr Aesthet Surg. 2020;73(3):576–85. https://doi.org/10.1016/j.bjps.2019.10.010.

Article  PubMed  Google Scholar 

Ji Y, Zhou Y, Shen Q, Xu W, Ge S, Gu L, Fan X. Prediction of late displacement of the globe in orbital blowout fractures. Acta Ophthalmol. 2020;98(2):197–202. https://doi.org/10.1111/aos.14226.

Article  Google Scholar 

Putterman A, Stevens T, Urist M. Nonsurgical management of blow-out fractures of the Orbital Floor. Am J Ophthalmol. 1974;77(2):232–9. https://doi.org/10.1016/0002-9394(74)90679-5.

Article  CAS  PubMed  Google Scholar 

Jazayeri HE, Khavanin N, Yu JW, Lopez J, Ganjawalla KP, Shamliyan T, Tannyhill RJ, Dorafshar AH. Does Early Repair of Orbital Fractures Result in Superior Patient Outcomes? A Systematic Review and Meta-Analysis. J Oral Maxillofac Surg. 2020;78(4):568–577; https://doi.org/10.1016/j.joms2019.09.025. This article provides evidence for surgeons who are considering the ideal timing of an orbital fracture repair.

Grob S, Yonkers M, Tao J. Orbital Fracture Repair. Semin Plast Surg. 2017;31(1):31–9. https://doi.org/10.1055/s-0037-1598191.

Article  PubMed  PubMed Central  Google Scholar 

Ramesh S, Hubschman S, Goldberg R. Resorbable Implants for Orbital Fractures: a systematic review. Ann Plast Surg. 2018;81(3):372–9. https://doi.org/10.1097/SAP.0000000000001504.

Article  CAS  PubMed  Google Scholar 

Pietzka S, Wenzel M, Winter K, Wilde F, Schramm A, Ebeling M, Kasper R, Scheurer M, Sakkas A. Comparison of Anatomical Preformed Titanium Implants and patient-specific CAD/CAM Implants in the Primary Reconstruction of isolated Orbital Fractures-A Retrospective Study. J Pers Med. 2023;13(5):846. https://doi.org/10.3390/jpm13050846.

Article  PubMed  PubMed Central  Google Scholar 

Zimmerer RM, Ellis EIII, Aniceto GS, Schramm A, Wagner ME, Grant MP, Cornelius CP, Strong EB, Rana M, Chye LT, Calle AR, Wilde F, Perez D, Tavassol F, Bittermann G, Mahoney NR, Alamillos MR, Bašić J, Dittmann J, Rasse M, Gellrich NC. A prospective multicenter study to compare the precision of posttraumatic internal orbital reconstruction with standard preformed and individualized orbital implants. J Craniomaxillofac Surg. 2016;44(9):1485–97. https://doi.org/10.1016/j.jcms.2016.07.014.

Article  PubMed  Google Scholar 

Reddy SK, Colakoglu S, Yoon JS, Bhoopalam M, Merbs SL, Manson PN, Grant MP. Treatment of Persistent Post-traumatic Diplopia- An Algorithmic Approach to Patient Stratification and Operative Management. Craniomaxillofacial Trauma & Reconstruction. 2023;16(2):89–93; https://doi.org/10.1177/19433875221083084. This review demonstrates the utility of combining clinical assessment with testing to determine the best course of action in patients with symptomatic orbital fractures.

Kim JS, Lee BW, Scawn RL, Korn BS, Kikkawa DO. Secondary Orbital Reconstruction in patients with prior Orbital Fracture Repair. Ophthalmic Plast Reconstr Surg 2016 Nov/Dec;32(6):447–51; https://doi.org/10.1097/IOP.0000000000000591.

Singh DD, Schorn L, Strong EB, Grant M, Schramm A, Hufendiek K, Gellrich NC, Rana M. Computer-assisted secondary Orbital Reconstruction. Craniomaxillofac Trauma Reconstr. 2021;14(1):29–35. https://doi.org/10.1177/1943387520935004. This study exemplifies the merits of personalized medicine in orbital surgery, as it details the use of patient specific orbital implants and computer-assisted surgical planning for complex secondary orbital reconstructions.

Wilde F, Krauß O, Sakkas A, Mascha F, Pietzka S, Schramm A. Custom wave-shaped CAD/CAM orbital wall implants for the management of post-enucleation socket syndrome. J Craniomaxillofac Surg. 2019;47(9):1398–405. https://doi.org/10.1016/j.jcms.2019.06.015.

Article  CAS  PubMed  Google Scholar 

Habib LA, Yoon MK. Patient specific implants in orbital reconstruction: a pilot study. Am J Ophthalmol Case Rep. 2021;24:101222. https://doi.org/10.1016/j.ajoc.2021.101222.

Article  PubMed  PubMed Central  Google Scholar 

Raveggi E, Sobrero F, Gerbino G. Patient Specific Implants for Orbital Reconstruction in the treatment of Silent Sinus Syndrome: two case reports. J Pers Med. 2023;13(4):578. https://doi.org/10.3390/jpm13040578.

Article  PubMed  PubMed Central  Google Scholar 

Smith TJ, Kahaly GJ, Ezra DG, Fleming JC, Dailey RA, Tang RA, Harris GJ, Antonelli A, Salvi M, Goldberg RA, Gigantelli JW, Couch SM, Shriver EM, Hayek BR, Hink EM, Woodward RM, Gabriel K, Magni G, Douglas RS. Teprotumumab for thyroid-Associated Orbitopathy. N Engl J Med. 2017;376:1748–61. https://doi.org/10.1056/NEJMoa1614949.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Douglas RS, Kahaly GJ, Patel A, Sile S, Thompson EH, Perdok R, Antonelli A. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020;382(4):341–52. https://doi.org/10.1056/NEJMoa1910434.

Article  CAS  PubMed  Google Scholar 

Sears CM, Wang Y, Bailey LA, Turbin R, Subramanian PS, Douglas R, Cockerham K, Kossler AL. Early efficacy of teprotumumab for the treatment of dysthyroid optic neuropathy: a multicenter study. Am J Ophthalmol Case Rep. 2021;14(23):101–11. https://doi.org/10.1016/j.ajoc.2021.101111.

Article  Google Scholar 

Douglas RS, Dailey R, Subramanian PS, Barbesino G, Ugradar S, Batten R, Qadeer RA, Cameron C. Proptosis and Diplopia Response With Teprotumumab and Placebo vs the Recommended Treatment Regimen With Intravenous Methylprednisolone in Moderate to Severe Thyroid Eye Disease: A Meta-analysis and Matching-Adjusted Indirect Comparison. JAMA Ophthalmol. 2022;140(4):328–335; https://doi.org/10.1001/jamaophthalmol2021.6284. This study compares the outcomes using an IGF-1R inhibitor versus IV steroids for the treatment of diplopia and proptosis in active thyroid eye disease. This is a very useful comparison for orbital surgeons to consider.

Dickinson B. VRDN-002, a second-generation insulin like growth Factor-1 receptor (IGF-1R) inhibitory antibody for thyroid Eye Disease: Preclinical Pharmacokinetics and Clinical Promise. Invest Ophthalmol Vis Sci. 2022;63(7):3995–A0337.

Google Scholar 

Hwang CJ, Rebollo NP, Mechels KB, Perry JD. Reactivation after Teprotumumab treatment for active thyroid Eye Disease. Am J Ophthalmol. 2024;263:152–9. https://doi.org/10.1016/j.ajo.2023.12.001.

Article  CAS  PubMed  Google Scholar 

Kahaly GJ D, RS H, RJ S, S. Smith TJ. Teprotumumab for patients with active​​ ​​thyroid Eye Disease: a Pooled Data analysis, subgroup analyses, and off-treatment follow-up results from two Randomised, Double-Masked, Placebo-Controlled, Multicentre trials. Lancet Diabetes Endocrinol. 2021;9(6):360–72. https://doi.org/10.1016/S2213-8587(21)00056-5.

Article  PubMed  Google Scholar 

Stan MN, Krieger CC. The adverse effects Profile of Teprotumumab. J Clin Endocrinol Metab. 2023;108(9):654–62. https://doi.org/10.1210/clinem/dgad213.

Article  Google Scholar 

Gupta V, Hammond CL, Roztocil E, Gonzalez MO, Feldon SE, Woeller CF. Thinking Inside the Box: Current Insights into Targeting Orbital Tissue Remodeling and Inflammation in Thyroid Eye Disease. Surv Ophthalmol. 2022 May-Jun;67(3):858–874; https://doi.org/10.1016/j.survophthal.2021.08.010.

Barbesino G, Salvi M, Freitag SK. Future Projections in Thyroid Eye Disease. J Clin Endocrinol Metab. 2022;107:47–56; https://doi.org/10.1210/clinem/dgac252. This review summarizes current surgical and non-surgical treatments of thyroid eye disease then discusses future treatments and biomarkers, which will allow for even greater individualization of thyroid eye disease treatment.

Bagheri A, Abbaszadeh M, Yazdani S. Intraorbital Steroid Injection for active thyroid ophthalmopathy. J Ophthalmic Vis Res. 2020;15(1):69–77. https://doi.org/10.18502/jovr.v15i1.5948.

Article  PubMed  PubMed Central  Google Scholar 

Goldberg RA, Gout T. Orbital Decompression: Conceptual Approach for Orbital Volume Expansion. Ophthalmic Plast Reconstr Surg. 2023;39(6S):105–111; https://doi.org/10.1097/IOP.0000000000002556. This article discusses orbital anatomy and defines 6 bony areas that surgeons can target to perform more patient-specific decompressions. The authors use this approach to advocate for neuroimaging-guided personalized surgical planning.

Mahoney N, Grant MP, Susarla SM, Merbs S. Computer-assisted three-Dimensional Planning for Orbital Decompression. Craniomaxillofac Trauma Reconstruction. 2015;8:211–7. https://doi.org/10.1055/s-0034-1393731.

Article  Google Scholar 

Al Qahtani ES, Rootman J, Kersey J, Godoy F, Lyons CJ. Clinical pearls and management recommendations for Strabismus due to thyroid orbitopathy. Middle East Afr J Ophthalmol. 2015 Jul-Sep;22(3):307–11. https://doi.org/10.4103/0974-9233.159731.

Kahana A, Unsworth SP, Andrews CA, Chan MP, Bresler SC, Bichakjian CK, Durham AB, Demirci H, Elner VM, Nelson CC, Kim DS, Joseph SS, Swiecicki PL, Worden FP. Vismodegib for Preservation of visual function in patients with Advanced Periocular basal cell carcinoma: the VISORB Trial. Oncologist. 2021;26(7):1240–9. https://doi.org/10.1002/onco.13820.

Article  CAS  Google Scholar 

Esmaeli B. Immune Checkpoint Inhibitor Therapy for Orbital and Ocular Adnexal Squamous Cell Carcinomas: International Society of Ocular Oncology President’s Lecture, 2022. Invest Ophthalmol Vis Sci. 2023;64(7):29; https://doi.org/10.1167/iovs.64.7.29. This article reviews the use of checkpoint inhibitors in treatment of locally advanced orbital squamous cell carcinomas, which may augment a surgeon’s approach to excision in some cases.

Sa HS, Daniel C, Esmaeli B. Update on Immune Checkpoint inhibitors for Conjunctival Melanoma. J Ophthalmic Vis Res. 2022;17(3):405–12. https://doi.org/10.18502/jovr.v17i3.11579.

Article  PubMed  PubMed Central  Google Scholar 

Rehn S, Elsayad K, Oertel M, Baehr A, Eter N, Haverkamp U, Lenz G, Eich HT. Radiotherapy Dose and volume de-escalation in Ocular Adnexal Lymphoma. Anticancer Res. 2020;40(7):4041–6. https://doi.org/10.21873/anticanres.14400.

Article  CAS  PubMed  Google Scholar 

Shelukar S, Fernandez C, Bas Z, Komarnicky L, Lally SE, Shields CL, Binder A, Porcu P, Alpdogan O, Martinez-Outschoorn U, Shi W. High local control and low ocular toxicity using Ultra-low-dose Boom-Boom Radiotherapy for Indolent Orbital Lymphoma. Chin Clin Oncol. 2022;11(6):44. https://doi.org/10.21037/cco-22-84.

Article  PubMed  Google Scholar 

Rootman DB, Diniz SB, Cohen LM. Clinical Assessment and Lesion-Specific Management of Orbital Vascular Malformations. J Neurol Surg B Skull Base. 2021;82(1):116–128; https://doi.org/10.1055/s-0040-1722702. This review covers a range of orbital vascular malformations and important considerations for treatment planning.

Ramesh S, Duckwiler G, Goldberg RA, Rootman DB. Multimodality management of complex periorbital venolymphatic malformations. Ophthal Plast Reconstr Surg. 2019;35(04):387–98. https://doi.org/10.1097/IOP.0000000000001294.

Article  PubMed 

留言 (0)

沒有登入
gif