Study of Au nanoparticles adsorbed on InGaAs/InP thin films to improve optical absorption properties in the near-infrared band

Wood, R.W.: On a remarkable case of unequal intensity of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18(1), 269–275 (1902)

Article  Google Scholar 

Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23a(12), 2135–2136 (1968)

Article  ADS  Google Scholar 

Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

Article  ADS  Google Scholar 

Wang, L., Chow, T.H., Oppermann, M., Wang, J., Chergui, M.: Giant two-photon absorption of anatase TiO2 in Au/TiO2 core-shell nanoparticles. Photon. Res. 11(7), 1303–1313 (2023)

Article  Google Scholar 

Tanaka, D., Harajiri, S., Fujita, Y., Forbes, K.A., Pham, T.T., Andrews, D.L.: Multipole excitation of localized plasmon resonance in asymmetrically coated core-shell nanoparticles using optical vortices. Laser Photon. Rev. 18(4), 2300536 (2024)

Article  ADS  Google Scholar 

Matsumori, A., Sugimoto, H., Fujii, M.: Unidirectional transverse light scattering in notched silicon nanosphere. Laser Photon. Rev. 17(8), 2300314 (2023)

Article  ADS  Google Scholar 

Liu, L., Zhangyang, X., Lv, Z., Lu, F., Tian, J.: Enhanced light trapping in GaN thin films with Al nanoparticles for photocathode applications. Mater. Sci. Eng. B 269, 115158 (2021)

Article  Google Scholar 

Sun, Y., Liu, L., Lv, Z., Zhangyang, X., Feifei, Lu., Tian, J.: Study on the optoelectronic properties of Ag, Pt, Na and Li particles adsorbed on GaAs nanowire arrays. Opt. Quant. Electron. 53, 226 (2021)

Article  Google Scholar 

Brongersma, M.L., Halas, N.J., Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015)

Article  ADS  Google Scholar 

Yurcheniuk, K., Dumych, T., et al.: Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 6(2), 1600–1610 (2016)

Article  ADS  Google Scholar 

Li, Wenbing, Zhao, Xinchu, Yi, Zhifeng, Glushenkov, Alexey M., Kong, Lingxue: Plasmonic substrates for surface enhanced Raman scattering. Analytica Chimica Acta 984, 19–41 (2017)

Article  Google Scholar 

Cheng Zhang, Yu., Luo, S.A., Maier, X.L.: Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photonics Rev. 16(6), 2100714 (2022)

Article  Google Scholar 

Nirmal, H.K., et al.: Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure. Physica E Low-dimens. Syst. Nanostr. 80, 36–42 (2016)

Article  ADS  Google Scholar 

Singh, A.K., et al.: Anisotropy and optical gain improvement in type-II In0.3Ga0.7As/GaAs0.4Sb0.6 nano-scale heterostructure under external uniaxial strain. Superlattic. Microstr. 98, 406–415 (2016)

Article  ADS  Google Scholar 

Bhardwaj, G., et al.: Uniaxial strain induced optical properties of complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure. Optik 146, 8–16 (2017)

Article  ADS  Google Scholar 

Liu, H., et al.: Design and fabrication of high performance InGaAs near infrared photodetector. Nanomaterials 13(21), 2895 (2023)

Article  Google Scholar 

Li, X., Zhang, J., Yue, C., et al.: High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure. Sci. Rep. 12, 7681 (2022)

Article  ADS  Google Scholar 

Zhang, J., Itzler, M., Zbinden, H., et al.: Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci Appl 4, e286 (2015)

Article  ADS  Google Scholar 

Almeida, J., et al.: Inhomogeneous and temperature-dependent p-InGaAs/n-InP band offset modification by silicon δ doping: an internal photoemission study. J. Appl. Phys. 78, 3258–3261 (1995)

Article  ADS  Google Scholar 

Mo, J., Lind, E., Wernersson, L. E.: Asymmetric InGaAs MOSFETs with InGaAs source and InP drain. IPRM (2014)

Gelczuk, L., et al.: Modification of energy bandgap in lattice mismatched InGaAs/GaAs heterostructures. Opt. Appl. 39(4), 945–852 (2009)

Google Scholar 

Gong, T.X., et al.: Fano resonance-enhanced Si/MoS2 photodetecter. Photonics Research 11(12), 2159–2167 (2023)

Article  Google Scholar 

Masudy-Panah, S., et al.: Stable and efficient CuO based photocathode through oxygen-rich composition and Au-Pd nanostructure incorporation for solar-hydrogen production. ACS Appl. Mater. Interfaces 9(33), 27596–27606 (2017)

Article  Google Scholar 

Yao, P., Li, T., Li, X., Shao, X., Gong, H.: Enhanced transmissivity of InP-based InGaAs photodetectors by optical nano-antenna. Infrar. Technol. 40(9), 843–846 (2018)

Google Scholar 

Zheng, W.L., et al.: Effects of InGaAs/InP interface control on the electrical and optical properties of InGaAs films. J. Infrar. Millimeter Waves 38(6), 751–757 (2019)

Google Scholar 

Lü, X., Rongguo, Fu., Chang, B., Guo, X., Wang, Z.: Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Phys. Sin. 73(3), 037801 (2024)

Article  Google Scholar 

Adachi, S.: Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 66, 6030–6040 (1989)

Article  ADS  Google Scholar 

Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

Article  ADS  Google Scholar 

Zhangyang, X., Liu, L., Lu, F., Tian, J.: Research on reflection-mode InxGa1-xN thin-film photocathode. J. Luminescence 255, 119597 (2023)

Article  ADS  Google Scholar 

Wang, X., Chang, B., Chang, Y., et al.: Study of spectral response for transmission-mode NEA GaN photocathodes. Acta Physica Sinica 60(5), 057902 (2011)

Article  Google Scholar 

Bao, Z., Liu, L., Wang, Z., Cao, Z.: The effect of micro-nanostructural changes on the absorption and emission characteristics of InGaAsP photocathodes. Modern Phys. Lett B. https://doi.org/10.1142/S0217984924503603 (2024)

留言 (0)

沒有登入
gif