Wood, R.W.: On a remarkable case of unequal intensity of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18(1), 269–275 (1902)
Kretschmann, E., Raether, H.: Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A 23a(12), 2135–2136 (1968)
Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)
Wang, L., Chow, T.H., Oppermann, M., Wang, J., Chergui, M.: Giant two-photon absorption of anatase TiO2 in Au/TiO2 core-shell nanoparticles. Photon. Res. 11(7), 1303–1313 (2023)
Tanaka, D., Harajiri, S., Fujita, Y., Forbes, K.A., Pham, T.T., Andrews, D.L.: Multipole excitation of localized plasmon resonance in asymmetrically coated core-shell nanoparticles using optical vortices. Laser Photon. Rev. 18(4), 2300536 (2024)
Matsumori, A., Sugimoto, H., Fujii, M.: Unidirectional transverse light scattering in notched silicon nanosphere. Laser Photon. Rev. 17(8), 2300314 (2023)
Liu, L., Zhangyang, X., Lv, Z., Lu, F., Tian, J.: Enhanced light trapping in GaN thin films with Al nanoparticles for photocathode applications. Mater. Sci. Eng. B 269, 115158 (2021)
Sun, Y., Liu, L., Lv, Z., Zhangyang, X., Feifei, Lu., Tian, J.: Study on the optoelectronic properties of Ag, Pt, Na and Li particles adsorbed on GaAs nanowire arrays. Opt. Quant. Electron. 53, 226 (2021)
Brongersma, M.L., Halas, N.J., Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015)
Yurcheniuk, K., Dumych, T., et al.: Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 6(2), 1600–1610 (2016)
Li, Wenbing, Zhao, Xinchu, Yi, Zhifeng, Glushenkov, Alexey M., Kong, Lingxue: Plasmonic substrates for surface enhanced Raman scattering. Analytica Chimica Acta 984, 19–41 (2017)
Cheng Zhang, Yu., Luo, S.A., Maier, X.L.: Recent progress and future opportunities for hot carrier photodetectors: from ultraviolet to infrared bands. Laser Photonics Rev. 16(6), 2100714 (2022)
Nirmal, H.K., et al.: Tunability of optical gain (SWIR region) in type-II In0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure. Physica E Low-dimens. Syst. Nanostr. 80, 36–42 (2016)
Singh, A.K., et al.: Anisotropy and optical gain improvement in type-II In0.3Ga0.7As/GaAs0.4Sb0.6 nano-scale heterostructure under external uniaxial strain. Superlattic. Microstr. 98, 406–415 (2016)
Bhardwaj, G., et al.: Uniaxial strain induced optical properties of complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure. Optik 146, 8–16 (2017)
Liu, H., et al.: Design and fabrication of high performance InGaAs near infrared photodetector. Nanomaterials 13(21), 2895 (2023)
Li, X., Zhang, J., Yue, C., et al.: High performance visible-SWIR flexible photodetector based on large-area InGaAs/InP PIN structure. Sci. Rep. 12, 7681 (2022)
Zhang, J., Itzler, M., Zbinden, H., et al.: Advances in InGaAs/InP single-photon detector systems for quantum communication. Light Sci Appl 4, e286 (2015)
Almeida, J., et al.: Inhomogeneous and temperature-dependent p-InGaAs/n-InP band offset modification by silicon δ doping: an internal photoemission study. J. Appl. Phys. 78, 3258–3261 (1995)
Mo, J., Lind, E., Wernersson, L. E.: Asymmetric InGaAs MOSFETs with InGaAs source and InP drain. IPRM (2014)
Gelczuk, L., et al.: Modification of energy bandgap in lattice mismatched InGaAs/GaAs heterostructures. Opt. Appl. 39(4), 945–852 (2009)
Gong, T.X., et al.: Fano resonance-enhanced Si/MoS2 photodetecter. Photonics Research 11(12), 2159–2167 (2023)
Masudy-Panah, S., et al.: Stable and efficient CuO based photocathode through oxygen-rich composition and Au-Pd nanostructure incorporation for solar-hydrogen production. ACS Appl. Mater. Interfaces 9(33), 27596–27606 (2017)
Yao, P., Li, T., Li, X., Shao, X., Gong, H.: Enhanced transmissivity of InP-based InGaAs photodetectors by optical nano-antenna. Infrar. Technol. 40(9), 843–846 (2018)
Zheng, W.L., et al.: Effects of InGaAs/InP interface control on the electrical and optical properties of InGaAs films. J. Infrar. Millimeter Waves 38(6), 751–757 (2019)
Lü, X., Rongguo, Fu., Chang, B., Guo, X., Wang, Z.: Improvement and structure optimization of transmission-mode GaAs photocathode performance. Acta Phys. Sin. 73(3), 037801 (2024)
Adachi, S.: Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1−xAs, and In1−xGaxAsyP1−y. J. Appl. Phys. 66, 6030–6040 (1989)
Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)
Zhangyang, X., Liu, L., Lu, F., Tian, J.: Research on reflection-mode InxGa1-xN thin-film photocathode. J. Luminescence 255, 119597 (2023)
Wang, X., Chang, B., Chang, Y., et al.: Study of spectral response for transmission-mode NEA GaN photocathodes. Acta Physica Sinica 60(5), 057902 (2011)
Bao, Z., Liu, L., Wang, Z., Cao, Z.: The effect of micro-nanostructural changes on the absorption and emission characteristics of InGaAsP photocathodes. Modern Phys. Lett B. https://doi.org/10.1142/S0217984924503603 (2024)
留言 (0)