A time-multiplexing approach to shared ventilation

Abstract

Ventilator shortages during the COVID-19 pandemic forced some hospitals to practice and many to consider shared ventilation, where a single ventilator is used to ventilate multiple patients simultaneously. However, the high risk of harm to co-ventilated patients secondary to the inability to treat anatomically different patients or safely adapt to dynamic ventilation requirements has prevented full adoption of multi-patient coventilation. Here, a time-multiplexing approach to shared ventilation is introduced to overcome these safety concerns. A proof-of-concept device consisting of electromechanically coupled ball valves to induce customized resistances and facilitate the delivery of alternating breaths from the ventilator to each patient is presented. The approach successfully ventilated two test lungs, and individualized tidal volume combinations of various magnitudes were produced. Over five hours of co-ventilation, consistency in tidal volume delivery was comparable to independent ventilation. Time-multiplexing was able to facilitate delivery of statistically unique tidal volumes to two test lungs and maintain the consistency of tidal volumes within each test lung while independently ventilated with identical parameters. The ability to adjust each test lung's inspiratory pressures dynamically and independently was also demonstrated. The time-multiplexing approach has the potential to increase the viability of co-ventilation for ongoing and future ventilator shortages.

Competing Interest Statement

All authors are listed as inventors on an international patent application for a time-multiplexed co-ventilation device prototype (PCT/US22/25218).

Funding Statement

This work was supported by the H. Lee Moffitt Cancer Center and Research Institute Department of Anesthesiology Discretionary Fund and a BioEngineering at Moffitt pilot award.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

留言 (0)

沒有登入
gif