Thermo Fisher (2018) Artifacts identified post-developmental validation: GlobalFilerTM PCR amplification. Technical note, pp 1–18
Thermo Fisher (2020) Artifacts identified post-developmental validation: Yfiler PlusTM PCR amplification. Technical note, pp 1–5
Inokuchi S, Mizuno N, Nakanishi H, Saito K, Kitayama T, Fujii K, Nakahara H, Sekiguchi K (2018) Non-specific peaks generated by animal DNA during human STR analysis: Peak characteristics and a novel analysis method for mixed human/animal samples. Forensic Sci Int Genet 37:73–80. https://doi.org/10.1016/j.fsigen.2018.07.020
Article CAS PubMed Google Scholar
Ludeman MJ, Zhong C, Mulero JJ, Lagacé RE, Hennessy LK, Short ML, Wang DY (2018) Developmental validation of GlobalFiler™ PCR amplification kit: a 6-dye multiplex assay designed for amplification of casework samples. Int J Legal Med 132:1555–1573. https://doi.org/10.1007/s00414-018-1817-5
Article PubMed PubMed Central Google Scholar
Diegoli TM, Moore T, Weitz S, Bille TW (2019) Prevalence and impact of PCR artifacts from soil samples using the Applied Biosystems™ GlobalFiler™ PCR amplification kit: interference of non-human artifacts in DNA profiles from a homicide investigation. Forensic Sci Int Genet Suppl Ser 7:41–43. https://doi.org/10.1016/j.fsigss.2019.09.018
Smajlović-Skenderagić L, Idrizbegović S, Brkanić L, Bilić A, Huel R, Parsons TJ (2021) Challenges with co-amplification of microbial DNA in interpretation of STR profiles obtained from human skeletal remains. Forensic Sci Int Genet 51:102452. https://doi.org/10.1016/j.fsigen.2020.102452
Article CAS PubMed Google Scholar
Gorden EM, Sturk-Andreaggi K, Warnke-Sommer J, Hazelwood A, Barritt-Ross S, Marshall C (2020) Next generation sequencing of STR artifacts produced from historical bone samples. Forensic Sci Int Genet 49:102397. https://doi.org/10.1016/j.fsigen.2020.102397
Article CAS PubMed Google Scholar
Magoč T, Salzberg L (2011) FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507
Article CAS PubMed PubMed Central Google Scholar
FASTX-Toolkit: FASTQ/a short-reads preprocessing tools. http://hannonlab.cshl.edu/fastx_toolkit/. Accessed 14 Jan 2023
Shen W, Le S, Li Y, Hu F (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962. https://doi.org/10.1371/journal.pone.0163962
Gettings KB, Borsuk LA, Ballard D, Bodner M, Budowle B, Devesse L, King J, Parson W, Phillips C, Vallone PM (2017) STRSeq: a catalog of sequence diversity at human identification Short Tandem Repeat loci. Forensic Sci Int Genet 31:111–117. https://doi.org/10.1016/j.fsigen.2017.08.017
Article CAS PubMed PubMed Central Google Scholar
Santos FR, Pandya A, Tyler-Smith C (1998) Reliability of DNA-based sex tests. Nat Genet 18:103. https://doi.org/10.1038/ng0298-103
Article CAS PubMed Google Scholar
van Oven M, van den Tempel N, Kayser M (2012) A multiplex SNP assay for the dissection of human Y-chromosome haplogroup O representing the major paternal lineage in East and Southeast Asia. J Hum Genet 57:65–69. https://doi.org/10.1038/jhg.2011.120
Article CAS PubMed Google Scholar
Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158
Article CAS PubMed Google Scholar
McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25. https://doi.org/10.1093/nar/gkh435
Article CAS PubMed PubMed Central Google Scholar
Mizuno N, Inokuchi S, Kitayama T, Fujii K, Kasai K, Sekiguchi K (2014) A method to determine the 5′ end of the binding site of primers included in a commercially available forensic human identification kit. Forensic Sci Int Genet 9:76–80. https://doi.org/10.1016/j.fsigen.2013.11.003
留言 (0)