Genetics of Cardiac Aging Implicate Organ-Specific Variation

Abstract

Heart structure and function change with age, and the notion that the heart may age faster for some individuals than for others has driven interest in estimating cardiac age acceleration. However, current approaches have limited feature richness (heart measurements; radiomics) or capture extraneous data and therefore lack cardiac specificity (deep learning [DL] on unmasked chest MRI). These technical limitations have been a barrier to efforts to understand genetic contributions to age acceleration. We hypothesized that a video-based DL model provided with heart-masked MRI data would capture a rich yet cardiac-specific representation of cardiac aging. In 61,691 UK Biobank participants, we excluded noncardiac pixels from cardiac MRI and trained a video-based DL model to predict age from one cardiac cycle in the 4-chamber view. We then computed cardiac age acceleration as the bias-corrected prediction of heart age minus the calendar age. Predicted heart age explained 71.1% of variance in calendar age, with a mean absolute error of 3.3 years. Cardiac age acceleration was linked to unfavorable cardiac geometry and systolic and diastolic dysfunction. We also observed links between cardiac age acceleration and diet, decreased physical activity, increased alcohol and tobacco use, and altered levels of 239 serum proteins, as well as adverse brain MRI characteristics. We found cardiac age acceleration to be heritable (h2g 26.6%); a genome-wide association study identified 8 loci related to linked to cardiomyopathy (near TTN, TNS1, LSM3, PALLD, DSP, PLEC, ANKRD1 and MYO18B) and an additional 16 loci (near MECOM, NPR3, KLHL3, HDGFL1, CDKN1A, ELN, SLC25A37, PI15, AP3M1, HMGA2, ADPRHL1, PGAP3, WNT9B, UHRF1 and DOK5). Of the discovered loci, 21 were not previously associated with cardiac age acceleration. Mendelian randomization revealed that lower genetically mediated levels of 6 circulating proteins (MSRA most strongly), as well as greater levels of 5 proteins (LXN most strongly) were associated with cardiac age acceleration, as were greater blood pressure and Lp(a). A polygenic score for cardiac age acceleration predicted earlier onset of arrhythmia, heart failure, myocardial infarction, and mortality. These findings provide a thematic understanding of cardiac age acceleration and suggest that heart- and vascular-specific factors are key to cardiac age acceleration, predominating over a more global aging program.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

J.N.B. is supported by funding from the Sarnoff Cardiovascular Research Foundation. J.P.P. is supported by NIH K08HL159346. G.H.T. is supported by the National Institutes of Health NHLBI K23HL135274.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The UK Biobank

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

GWAS summary statistics for cardiac age acceleration and model weights, along with training and quality control code are available at https://zenodo.org/records/12802434 . At publication, final GWAS summary statistics will be added to the GWAS Catalogue, and any code changes will be updated.

留言 (0)

沒有登入
gif