Induction of osteoblast apoptosis stimulates macrophage efferocytosis and paradoxical bone formation

Denaxa, M., Neves, G., Burrone, J. & Pachnis, V. Homeostatic regulation of interneuron apoptosis during cortical development. J. Exp. Neurosci. 12, 1179069518784277 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Hojo, M. A. et al. Identification of a genomic enhancer that enforces proper apoptosis induction in thymic negative selection. Nat. Commun. 10, 2603 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Arandjelovic, S. & Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 16, 907–917 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gerlach, B. D. et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 33, 2445–2463.e2448 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meriwether, D. et al. Macrophage COX2 mediates efferocytosis, resolution reprogramming, and intestinal epithelial repair. Cell. Mol. Gastroenterol. Hepatol. 13, 1095–1120 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kalajzic, Z. et al. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone 43, 501–510 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, Q. et al. Recent advances of osterix transcription factor in osteoblast differentiation and bone formation. Front. Cell Dev. Biol. 8, 601224 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Amarasekara, D. S., Kim, S. & Rho, J. Regulation of osteoblast differentiation by cytokine networks. Int. J. Mol. Sci. 22, 2851 (2021).

Jilka, R. L., Weinstein, R. S., Bellido, T., Parfitt, A. M. & Manolagas, S. C. Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J. Bone Miner. Res. 13, 793–802 (1998).

Article  CAS  PubMed  Google Scholar 

Li, H. et al. Glucocorticoid receptor and sequential p53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One 7, e37030 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yang, L. et al. Paeoniflorin attenuates dexamethasone-induced apoptosis of osteoblast cells and promotes bone formation via regulating AKT/mTOR/autophagy signaling pathway. Evid. Based Complement. Alternat. Med. 2021, 6623464 (2021).

PubMed  PubMed Central  Google Scholar 

Mollazadeh, S., Fazly Bazzaz, B. S. & Kerachian, M. A. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J. Orthop. Surg. Res. 10, 15 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Beltinger, C. et al. Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc. Natl. Acad. Sci. USA 96, 8699–8704 (1999).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruedl, C. & Jung, S. DTR-mediated conditional cell ablation—progress and challenges. Eur. J. Immunol. 48, 1114–1119 (2018).

Article  CAS  PubMed  Google Scholar 

Yang, J., Liu, T. J. & Lu, Y. Effects of bicistronic lentiviral vector-mediated herpes simplex virus thymidine kinase/ganciclovir system on human lens epithelial cells. Curr. Eye Res. 32, 33–42 (2007).

Article  PubMed  Google Scholar 

Hu, L. et al. Diphtheria toxin-induced cell death triggers Wnt-dependent hair cell regeneration in neonatal mice. J. Neurosci. 36, 9479–9489 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helsby, N. A., Ferry, D. M., Patterson, A. V., Pullen, S. M. & Wilson, W. R. 2-Amino metabolites are key mediators of CB 1954 and SN 23862 bystander effects in nitroreductase GDEPT. Br. J. Cancer 90, 1084–1092 (2004).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Batoon, L., Koh, A. J., Kannan, R., McCauley, L. K. & Roca, H. Caspase-9 driven murine model of selective cell apoptosis and efferocytosis. Cell Death Dis. 14, 58 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, F. et al. Versatile cell ablation tools and their applications to study loss of cell functions. Cell. Mol. Life Sci. 76, 4725–4743 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hochweller, K., Striegler, J., Hämmerling, G. J. & Garbi, N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur. J. Immunol. 38, 2776–2783 (2008).

Article  CAS  PubMed  Google Scholar 

Millard, S. M. et al. Fragmentation of tissue-resident macrophages during isolation confounds analysis of single-cell preparations from mouse hematopoietic tissues. Cell Rep. 37, 110058 (2021).

Article  CAS  PubMed  Google Scholar 

Yurdagul, A. Jr. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e510 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chistiakov, D. A., Killingsworth, M. C., Myasoedova, V. A., Orekhov, A. N. & Bobryshev, Y. V. CD68/macrosialin: not just a histochemical marker. Lab. Invest. 97, 4–13 (2017).

Article  CAS  PubMed  Google Scholar 

Batoon, L. et al. CD169+ macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 196, 51–66 (2019).

Article  CAS  PubMed  Google Scholar 

Drake, M. T. & Khosla, S. Hormonal and systemic regulation of sclerostin. Bone 96, 8–17 (2017).

Article  CAS  PubMed  Google Scholar 

Kuo, T.-R. & Chen, C.-H. Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark. Res. 5, 18 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Chubb, S. A. P. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin. Biochem. 45, 928–935 (2012).

Article  CAS  PubMed  Google Scholar 

Qin, L. et al. Amphiregulin is a novel growth factor involved in normal bone development and in the cellular response to parathyroid hormone stimulation. J. Biol. Chem. 280, 3974–3981 (2005).

Article  CAS  PubMed  Google Scholar 

Chandra, A., Lan, S., Zhu, J., Siclari, V. A. & Qin, L. Epidermal growth factor receptor (EGFR) signaling promotes proliferation and survival in osteoprogenitors by increasing early growth response 2 (EGR2) expression. J. Biol. Chem. 288, 20488–20498 (2013).

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif