Karkhanechi, M. et al. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy. Angle Orthod. 83, 146–151 (2013).
Zheng, Y., Zhu, C., Zhu, M. & Lei, L. Difference in the alveolar bone remodeling between the adolescents and adults during upper incisor retraction: a retrospective study. Sci. Rep. 12, 9161 (2022).
Article PubMed PubMed Central Google Scholar
Monje, A. et al. Alveolar bone architecture: a systematic review and meta-analysis. J. Periodontol. 86, 1231–1248 (2015).
Article CAS PubMed Google Scholar
Jäger, A. Histomorphometric study of age-related changes in remodelling activity of human desmodontal bone. J. Anat. 189, 257–264 (1996).
PubMed PubMed Central Google Scholar
Krieger, E., Hornikel, S. & Wehrbein, H. Age-related changes of fibroblast density in the human periodontal ligament. Head Face Med. 9, 22 (2013).
Article PubMed PubMed Central Google Scholar
Wu, R. X., Bi, C. S., Yu, Y., Zhang, L. L. & Chen, F. M. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22, 70–82 (2015).
Article CAS PubMed Google Scholar
Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).
Article CAS PubMed Google Scholar
Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020).
Article CAS PubMed PubMed Central Google Scholar
Sfeir, J. G., Drake, M. T., Khosla, S. & Farr, J. N. Skeletal aging. Mayo Clin. Proc. 97, 1194–1208 (2022).
Article CAS PubMed Google Scholar
Cui, J., Shibata, Y., Zhu, T., Zhou, J. & Zhang, J. Osteocytes in bone aging: advances, challenges, and future perspectives. Ageing Res. Rev. 77, 101608 (2022).
Article CAS PubMed Google Scholar
Qadir, A. et al. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21010349 (2020).
Rinonapoli, G. et al. Osteoporosis in men: a review of an underestimated bone condition. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22042105 (2021).
Hildebolt, C. F. Osteoporosis and oral bone loss. Dentomaxillofac. Radiol. 26, 3–15 (1997).
Article CAS PubMed Google Scholar
Kirschneck, C. et al. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann. Anat. Anat. Anz.10, 32–43 (2017).
Furquim, B. D., Janson, G., Cope, L. C. C., Freitas, K. M. S. & Henriques, J. F. C. Comparative effects of the Mandibular Protraction Appliance in adolescents and adults. Dent. Press J. Orthod. 23, 63–72 (2018).
Stepovich, M. L. A clinical study on closing edentulous spaces in the mandible. Angle Orthod. 49, 227–233 (1979).
Kawasaki, K., Takahashi, T., Yamaguchi, M. & Kasai, K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod. Craniofacial Res. 9, 137–142 (2006).
Alikhani, M. et al. Age-dependent biologic response to orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 153, 632–644 (2018).
Iwasaki, L. R., Liu, Y., Liu, H. & Nickel, J. C. Speed of human tooth movement in growers and non-growers: Selection of applied stress matters. Orthod. Craniofacial Res. 20, 63–67 (2017).
Iwasaki, L. R. et al. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am. J. Orthod. Dentofac. Orthop. 128, 483–491 (2005).
Nickel, J. C., Liu, H., Marx, D. B. & Iwasaki, L. R. Effects of mechanical stress and growth on the velocity of tooth movement. Am. J. Orthod. Dentofac. Orthop. 145, S74–S81 (2014).
Dudic, A., Giannopoulou, C. & Kiliaridis, S. Factors related to the rate of orthodontically induced tooth movement. Am. J. Orthod. Dentofac. Orthop. 143, 616–621 (2013).
Ren, Y., Kuijpers-Jagtman, A. M. & Maltha, J. C. Immunohistochemical evaluation of osteoclast recruitment during experimental tooth movement in young and adult rats. Arch. Oral. Biol. 50, 1032–1039 (2005).
Ren, Y., Maltha, J. C., Van ‘t Hof, M. A. & Kuijpers-Jagtman, A. M. Age effect on orthodontic tooth movement in rats. J. Dent. Res. 82, 38–42 (2003).
Article CAS PubMed Google Scholar
Bridges, T., King, G. & Mohammed, A. The effect of age on tooth movement and mineral density in the alveolar tissues of the rat. Am. J. Orthod. Dentofac. Orthop. 93, 245–250 (1988).
Misawa-Kageyama, Y. et al. Histomorphometric study on the effects of age on orthodontic tooth movement and alveolar bone turnover in rats. Eur. J. Oral. Sci. 115, 124–130 (2007).
Giannopoulou, C., Dudic, A., Pandis, N. & Kiliaridis, S. Slow and fast orthodontic tooth movement: an experimental study on humans. Eur. J. Orthod. 38, 404–408 (2016).
Dyer, G. S., Harris, E. F. & Vaden, J. L. Age effects on orthodontic treatment: adolescents contrasted with adults. Am. J. Orthod. Dentofac. Orthop. 100, 523–530 (1991).
Harris, E. F. & Baker, W. C. Loss of root length and crestal bone height before and during treatment in adolescent and adult orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 98, 463–469 (1990).
Ohiomoba, H., Sonis, A., Yansane, A. & Friedland, B. Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. Am. J. Orthod. Dentofac. Orthop. 151, 82–91 (2017).
Liu, C. C., Baylink, D. J., Wergedal, J. E., Allenbach, H. M. & Sipe, J. Pore size measurements and some age-related changes in human alveolar bone and rat femur. J. Dent. Res. 56, 143–150 (1977).
Article CAS PubMed Google Scholar
Deguchi, T. et al. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am. J. Orthod. Dentofac. Orthop. 133, 889–897 (2008).
Hashimoto, M. et al. The effect of bone morphometric changes on orthodontic tooth movement in an osteoporotic animal model. Angle Orthod. 83, 766–773 (2013).
Article PubMed PubMed Central Google Scholar
Grimm, F. M. Bone bending, a feature of orthodontic tooth movement. Am. J. Orthod. 62, 384–393 (1972).
Article CAS PubMed Google Scholar
Li, Y., Zhan, Q., Bao, M., Yi, J. & Li, Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int. J. Oral. Sci. 13, 20 (2021).
Article PubMed PubMed Central Google Scholar
Odagaki, N. et al. Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J. Dent. Res. 97, 1374–1382 (2018).
Article CAS PubMed Google Scholar
Ren, Y., Maltha, J. C., Stokroos, L., Liem, R. S. B. & Kuijpers-Jagtman, A. M. Age-related changes of periodontal ligament surface areas during force application. Angle Orthod. 78, 1000–1005 (2008).
留言 (0)