Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out

Karkhanechi, M. et al. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy. Angle Orthod. 83, 146–151 (2013).

Article  PubMed  Google Scholar 

Zheng, Y., Zhu, C., Zhu, M. & Lei, L. Difference in the alveolar bone remodeling between the adolescents and adults during upper incisor retraction: a retrospective study. Sci. Rep. 12, 9161 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Monje, A. et al. Alveolar bone architecture: a systematic review and meta-analysis. J. Periodontol. 86, 1231–1248 (2015).

Article  CAS  PubMed  Google Scholar 

Jäger, A. Histomorphometric study of age-related changes in remodelling activity of human desmodontal bone. J. Anat. 189, 257–264 (1996).

PubMed  PubMed Central  Google Scholar 

Krieger, E., Hornikel, S. & Wehrbein, H. Age-related changes of fibroblast density in the human periodontal ligament. Head Face Med. 9, 22 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Wu, R. X., Bi, C. S., Yu, Y., Zhang, L. L. & Chen, F. M. Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater. 22, 70–82 (2015).

Article  CAS  PubMed  Google Scholar 

Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

Article  CAS  PubMed  Google Scholar 

Salhotra, A., Shah, H. N., Levi, B. & Longaker, M. T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 21, 696–711 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sfeir, J. G., Drake, M. T., Khosla, S. & Farr, J. N. Skeletal aging. Mayo Clin. Proc. 97, 1194–1208 (2022).

Article  CAS  PubMed  Google Scholar 

Cui, J., Shibata, Y., Zhu, T., Zhou, J. & Zhang, J. Osteocytes in bone aging: advances, challenges, and future perspectives. Ageing Res. Rev. 77, 101608 (2022).

Article  CAS  PubMed  Google Scholar 

Qadir, A. et al. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21010349 (2020).

Rinonapoli, G. et al. Osteoporosis in men: a review of an underestimated bone condition. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22042105 (2021).

Hildebolt, C. F. Osteoporosis and oral bone loss. Dentomaxillofac. Radiol. 26, 3–15 (1997).

Article  CAS  PubMed  Google Scholar 

Kirschneck, C. et al. Interactive effects of periodontitis and orthodontic tooth movement on dental root resorption, tooth movement velocity and alveolar bone loss in a rat model. Ann. Anat. Anat. Anz.10, 32–43 (2017).

Article  Google Scholar 

Furquim, B. D., Janson, G., Cope, L. C. C., Freitas, K. M. S. & Henriques, J. F. C. Comparative effects of the Mandibular Protraction Appliance in adolescents and adults. Dent. Press J. Orthod. 23, 63–72 (2018).

Article  Google Scholar 

Stepovich, M. L. A clinical study on closing edentulous spaces in the mandible. Angle Orthod. 49, 227–233 (1979).

CAS  PubMed  Google Scholar 

Kawasaki, K., Takahashi, T., Yamaguchi, M. & Kasai, K. Effects of aging on RANKL and OPG levels in gingival crevicular fluid during orthodontic tooth movement. Orthod. Craniofacial Res. 9, 137–142 (2006).

Article  CAS  Google Scholar 

Alikhani, M. et al. Age-dependent biologic response to orthodontic forces. Am. J. Orthod. Dentofac. Orthop. 153, 632–644 (2018).

Article  Google Scholar 

Iwasaki, L. R., Liu, Y., Liu, H. & Nickel, J. C. Speed of human tooth movement in growers and non-growers: Selection of applied stress matters. Orthod. Craniofacial Res. 20, 63–67 (2017).

Article  Google Scholar 

Iwasaki, L. R. et al. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am. J. Orthod. Dentofac. Orthop. 128, 483–491 (2005).

Article  Google Scholar 

Nickel, J. C., Liu, H., Marx, D. B. & Iwasaki, L. R. Effects of mechanical stress and growth on the velocity of tooth movement. Am. J. Orthod. Dentofac. Orthop. 145, S74–S81 (2014).

Article  Google Scholar 

Dudic, A., Giannopoulou, C. & Kiliaridis, S. Factors related to the rate of orthodontically induced tooth movement. Am. J. Orthod. Dentofac. Orthop. 143, 616–621 (2013).

Article  Google Scholar 

Ren, Y., Kuijpers-Jagtman, A. M. & Maltha, J. C. Immunohistochemical evaluation of osteoclast recruitment during experimental tooth movement in young and adult rats. Arch. Oral. Biol. 50, 1032–1039 (2005).

Article  PubMed  Google Scholar 

Ren, Y., Maltha, J. C., Van ‘t Hof, M. A. & Kuijpers-Jagtman, A. M. Age effect on orthodontic tooth movement in rats. J. Dent. Res. 82, 38–42 (2003).

Article  CAS  PubMed  Google Scholar 

Bridges, T., King, G. & Mohammed, A. The effect of age on tooth movement and mineral density in the alveolar tissues of the rat. Am. J. Orthod. Dentofac. Orthop. 93, 245–250 (1988).

Article  CAS  Google Scholar 

Misawa-Kageyama, Y. et al. Histomorphometric study on the effects of age on orthodontic tooth movement and alveolar bone turnover in rats. Eur. J. Oral. Sci. 115, 124–130 (2007).

Article  PubMed  Google Scholar 

Giannopoulou, C., Dudic, A., Pandis, N. & Kiliaridis, S. Slow and fast orthodontic tooth movement: an experimental study on humans. Eur. J. Orthod. 38, 404–408 (2016).

Article  PubMed  Google Scholar 

Dyer, G. S., Harris, E. F. & Vaden, J. L. Age effects on orthodontic treatment: adolescents contrasted with adults. Am. J. Orthod. Dentofac. Orthop. 100, 523–530 (1991).

Article  CAS  Google Scholar 

Harris, E. F. & Baker, W. C. Loss of root length and crestal bone height before and during treatment in adolescent and adult orthodontic patients. Am. J. Orthod. Dentofac. Orthop. 98, 463–469 (1990).

Article  CAS  Google Scholar 

Ohiomoba, H., Sonis, A., Yansane, A. & Friedland, B. Quantitative evaluation of maxillary alveolar cortical bone thickness and density using computed tomography imaging. Am. J. Orthod. Dentofac. Orthop. 151, 82–91 (2017).

Article  Google Scholar 

Liu, C. C., Baylink, D. J., Wergedal, J. E., Allenbach, H. M. & Sipe, J. Pore size measurements and some age-related changes in human alveolar bone and rat femur. J. Dent. Res. 56, 143–150 (1977).

Article  CAS  PubMed  Google Scholar 

Deguchi, T. et al. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. Am. J. Orthod. Dentofac. Orthop. 133, 889–897 (2008).

Article  Google Scholar 

Hashimoto, M. et al. The effect of bone morphometric changes on orthodontic tooth movement in an osteoporotic animal model. Angle Orthod. 83, 766–773 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Grimm, F. M. Bone bending, a feature of orthodontic tooth movement. Am. J. Orthod. 62, 384–393 (1972).

Article  CAS  PubMed  Google Scholar 

Li, Y., Zhan, Q., Bao, M., Yi, J. & Li, Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: up-date in a new decade. Int. J. Oral. Sci. 13, 20 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Odagaki, N. et al. Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J. Dent. Res. 97, 1374–1382 (2018).

Article  CAS  PubMed  Google Scholar 

Ren, Y., Maltha, J. C., Stokroos, L., Liem, R. S. B. & Kuijpers-Jagtman, A. M. Age-related changes of periodontal ligament surface areas during force application. Angle Orthod. 78, 1000–1005 (2008).

Article 

留言 (0)

沒有登入
gif