Auvray, M. & Spence, C. The multisensory perception of flavor. Conscious. Cogn. 17, 1016–1031 (2008).
Stein, B. E. & Meredith, M. A. The Merging of the Senses (MIT Press, 1993).
Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).
Article CAS PubMed Google Scholar
Welch, R. B. & Warren, D. H. Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88, 638–667 (1980).
Article CAS PubMed Google Scholar
Talsma, D., Senkowski, D., Soto-Faraco, S. & Woldorff, M. G. The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 14, 400–410 (2010).
Article PubMed PubMed Central Google Scholar
Spence, C. & Squire, S. Multisensory integration: maintaining the perception of synchrony. Curr. Biol. 13, R519–R521 (2003).
Article CAS PubMed Google Scholar
Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010).
Article CAS PubMed Google Scholar
Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).
Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).
Article CAS PubMed Google Scholar
Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).
Article CAS PubMed Google Scholar
Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).
Article CAS PubMed Google Scholar
Fries, P., Nikolić, D. & Singer, W. The gamma cycle. Trends Neurosci. 30, 309–316 (2007).
Article CAS PubMed Google Scholar
Senkowski, D., Schneider, T. R., Foxe, J. J. & Engel, A. K. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 31, 401–409 (2008).
Article CAS PubMed Google Scholar
Engel, A. K. & Fries, P. Beta-band oscillations — signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).
Article CAS PubMed Google Scholar
Jensen, O., Bonnefond, M. & VanRullen, R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn. Sci. 16, 200–206 (2012).
Lisman, J. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15, 913–922 (2005).
Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).
Jensen, O., Gips, B., Bergmann, T. O. & Bonnefond, M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 37, 357–369 (2014).
Article CAS PubMed Google Scholar
Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).
Article PubMed PubMed Central Google Scholar
Wang, X.-J. & Kennedy, H. Brain structure and dynamics across scales: in search of rules. Curr. Opin. Neurobiol. 37, 92–98 (2016).
Article PubMed PubMed Central Google Scholar
Cavanagh, S. E., Hunt, L. T. & Kennerley, S. W. A diversity of intrinsic timescales underlie neural computations. Front. Neural Circuits 14, 615626 (2020).
Article CAS PubMed PubMed Central Google Scholar
Soltani, A., Murray, J. D., Seo, H. & Lee, D. Timescales of cognition in the brain. Curr. Opin. Behav. Sci. 41, 30–37 (2021). This review discusses how information processing on different neural timescales may contribute to sensory and reward integration in the brain.
Article PubMed PubMed Central Google Scholar
Wolff, A. et al. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn. Sci. 26, 159–173 (2022). This paper provides a comprehensive review on the role of intrinsic neural timescales, as measured by the autocorrelation window, for the integration and segregation of sensory input.
Singer, W. et al. Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1, 252–261 (1997).
Article CAS PubMed Google Scholar
Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).
Article CAS PubMed Google Scholar
Engel, A., Gerloff, C., Hilgetag, C. & Nolte, G. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80, 867–886 (2013). This review summarizes evidence for the functional importance of intrinsically generated neural coupling at multiple timescales.
Article CAS PubMed Google Scholar
Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).
Article CAS PubMed PubMed Central Google Scholar
Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).
Article CAS PubMed Google Scholar
Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).
Article CAS PubMed PubMed Central Google Scholar
Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).
Article PubMed PubMed Central Google Scholar
Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).
Article PubMed PubMed Central Google Scholar
Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38, 725–740 (2015).
Article CAS PubMed Google Scholar
Yamashita, Y. & Tani, J. in Computational and Robotic Models of the Hierarchical Organization of Behavior (ed. Baldassarre, G. M.) 47–62 (Springer, 2013).
Buschman, T. J. & Kastner, S. From behavior to neural dynamics: an integrated theory of attention. Neuron 88, 127–144 (2015).
留言 (0)