Multi-timescale neural dynamics for multisensory integration

Auvray, M. & Spence, C. The multisensory perception of flavor. Conscious. Cogn. 17, 1016–1031 (2008).

Article  PubMed  Google Scholar 

Stein, B. E. & Meredith, M. A. The Merging of the Senses (MIT Press, 1993).

Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).

Article  CAS  PubMed  Google Scholar 

Welch, R. B. & Warren, D. H. Immediate perceptual response to intersensory discrepancy. Psychol. Bull. 88, 638–667 (1980).

Article  CAS  PubMed  Google Scholar 

Talsma, D., Senkowski, D., Soto-Faraco, S. & Woldorff, M. G. The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 14, 400–410 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Spence, C. & Squire, S. Multisensory integration: maintaining the perception of synchrony. Curr. Biol. 13, R519–R521 (2003).

Article  CAS  PubMed  Google Scholar 

Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010).

Article  CAS  PubMed  Google Scholar 

Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004).

Article  PubMed  Google Scholar 

Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

Article  CAS  PubMed  Google Scholar 

Singer, W. Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999).

Article  CAS  PubMed  Google Scholar 

Engel, A. K., Fries, P. & Singer, W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716 (2001).

Article  CAS  PubMed  Google Scholar 

Fries, P., Nikolić, D. & Singer, W. The gamma cycle. Trends Neurosci. 30, 309–316 (2007).

Article  CAS  PubMed  Google Scholar 

Senkowski, D., Schneider, T. R., Foxe, J. J. & Engel, A. K. Crossmodal binding through neural coherence: implications for multisensory processing. Trends Neurosci. 31, 401–409 (2008).

Article  CAS  PubMed  Google Scholar 

Engel, A. K. & Fries, P. Beta-band oscillations — signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).

Article  CAS  PubMed  Google Scholar 

Jensen, O., Bonnefond, M. & VanRullen, R. An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn. Sci. 16, 200–206 (2012).

Article  PubMed  Google Scholar 

Lisman, J. The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus 15, 913–922 (2005).

Article  PubMed  Google Scholar 

Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

Article  PubMed  Google Scholar 

Jensen, O., Gips, B., Bergmann, T. O. & Bonnefond, M. Temporal coding organized by coupled alpha and gamma oscillations prioritize visual processing. Trends Neurosci. 37, 357–369 (2014).

Article  CAS  PubMed  Google Scholar 

Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Wang, X.-J. & Kennedy, H. Brain structure and dynamics across scales: in search of rules. Curr. Opin. Neurobiol. 37, 92–98 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Cavanagh, S. E., Hunt, L. T. & Kennerley, S. W. A diversity of intrinsic timescales underlie neural computations. Front. Neural Circuits 14, 615626 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soltani, A., Murray, J. D., Seo, H. & Lee, D. Timescales of cognition in the brain. Curr. Opin. Behav. Sci. 41, 30–37 (2021). This review discusses how information processing on different neural timescales may contribute to sensory and reward integration in the brain.

Article  PubMed  PubMed Central  Google Scholar 

Wolff, A. et al. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn. Sci. 26, 159–173 (2022). This paper provides a comprehensive review on the role of intrinsic neural timescales, as measured by the autocorrelation window, for the integration and segregation of sensory input.

Article  PubMed  Google Scholar 

Singer, W. et al. Neuronal assemblies: necessity, signature and detectability. Trends Cogn. Sci. 1, 252–261 (1997).

Article  CAS  PubMed  Google Scholar 

Siegel, M., Donner, T. H. & Engel, A. K. Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012).

Article  CAS  PubMed  Google Scholar 

Engel, A., Gerloff, C., Hilgetag, C. & Nolte, G. Intrinsic coupling modes: multiscale interactions in ongoing brain activity. Neuron 80, 867–886 (2013). This review summarizes evidence for the functional importance of intrinsically generated neural coupling at multiple timescales.

Article  CAS  PubMed  Google Scholar 

Fries, P. Rhythms for cognition: communication through coherence. Neuron 88, 220–235 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bastos, A. M. et al. Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron 85, 390–401 (2015).

Article  CAS  PubMed  Google Scholar 

Michalareas, G. et al. Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas. Neuron 89, 384–397 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helfrich, R. F. & Knight, R. T. Oscillatory dynamics of prefrontal cognitive control. Trends Cogn. Sci. 20, 916–930 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

Article  PubMed  PubMed Central  Google Scholar 

Hyafil, A., Giraud, A.-L., Fontolan, L. & Gutkin, B. Neural cross-frequency coupling: connecting architectures, mechanisms, and functions. Trends Neurosci. 38, 725–740 (2015).

Article  CAS  PubMed  Google Scholar 

Yamashita, Y. & Tani, J. in Computational and Robotic Models of the Hierarchical Organization of Behavior (ed. Baldassarre, G. M.) 47–62 (Springer, 2013).

Buschman, T. J. & Kastner, S. From behavior to neural dynamics: an integrated theory of attention. Neuron 88, 127–144 (2015).

Article  CAS 

留言 (0)

沒有登入
gif