T.D. Rao, T. Karthik, and S. Asthana, Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite. J. Rare Eart. 31, 370 (2013).
G. Catalan and J.F. Scott, Physics and applications of bismuth ferrite. Adv. mater. 21, 2463 (2009).
T. Sahu and B. Behera, Dielectric, electrical and magnetic study of rare-earth-doped bismuth ferrite lead titanate. App. Phys. A 125, 1 (2019).
V. Verma, Structural, electrical and magnetic properties of rare-earth and transition element co-doped bismuth ferrites. J. Alloys Compd. 641, 205 (2015).
F. Shahrab and A. Tadjarodi, Exploring the role of fuel in the synthesis of bismuth ferrite nanoparticles by microwave-assisted combustion in solid state and the study of photocatalytic degradation of Brilliant Blue. J. Mol. Struct. 1295, 136806 (2024).
S. Godara, N. Sinha, G. Ray, and B. Kumar, Combined structural, electrical, magnetic and optical characterization of bismuth ferrite nanoparticles synthesized by auto-combustion route. J. Asian Ceram. Soc. 2, 416 (2014).
S.E. Ali, A.M. Abdelghany, and Y.M. Abbas, Structural and magnetic quantification of rhombohedral–orthorhombic phase transition in gadolinium substituted bismuth ferrite. J. Magn. Magn. Mater. 572, 170600 (2023).
P.C. Sati, M. Arora, S. Chauhan, M. Kumar, and S. Chhoker, Effect of Dy substitution on structural, magnetic and optical properties of BiFeO3 ceramics. J. Phys. Chem. Solids 75, 105 (2014).
Z.X. Cheng, A.H. Li, X.L. Wang, S.X. Dou, K. Ozawa, H. Kimura, S.J. Zhang, and T.R. Shrout, Structure, ferroelectric properties, and magnetic properties of the La-doped bismuth ferrite. J. Appl. Phys. 103, 07E507 (2008).
S.G. Nair, J. Satapathy, and N.P. Kumar, Influence of synthesis, dopants, and structure on electrical properties of bismuth ferrite (BiFeO3). Appl. Phys. A 126, 836 (2020).
S. Acharya, S. Sutradhar, J. Mandal, K. Mukhopadhyay, A.K. Deb, and P.K. Chakrabarti, Sol–gel derived nanocrystalline multiferroic BiFeO3 and R3+ (R=Er and Tm) doped therein: magnetic phase transitions and enhancement of magnetic properties. J. Magn. Magn. Mater. 324, 4209 (2012).
J. Zhao, S. Liu, W. Zhang, Z. Liu, and Z. Liu, Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J. Nanopart. Res. 15, 1969 (2013).
Y. Nassereddine, M. Benyoussef, B. Asbani, M.E. Marssi, and M. Jouiad, Recent advances toward enhanced photocatalytic proprieties of BiFeO3-based materials. Nanomaterials 14, 51 (2023).
Article PubMed PubMed Central Google Scholar
N. Sheoran, A. Kumar, V. Kumar, and A. Banerjee, Structural, optical, and multiferroic properties of yttrium (Y3+)-substituted BiFeO3 nanostructures. J. Supercond. Nov. Magn. 33, 201 (2020).
K.S. Kumar, S. Ramu, A. Sudharani, M. Ramanadha, G. Murali, and R.P. Vijayalakshmi, Enhanced magnetic and dielectric properties of Gd doped BiFeO3: Er nanoparticles synthesized by sol–gel technique. Phys. E Low Dimens. Syst. Nanostruct. 115, 113689 (2020).
A.K. Sahu, P. Mallick, S.K. Satpathy, and B. Behera, Effect on structural, electrical and temperature sensing behavior of neodymium doped bismuth ferrite. Adv. Mater. Lett. 12, 1 (2021).
S. Divya Lakshmi, I.B. Shameem Banu, R. Rajesh, M. Hafiz Mamat, and G. Gowri, Molecular design of BiFeO3 via novel substitution by zirconium and erbium for tuning the multifunctional properties and band structure calculations. Appl. Phys. A 129, 552 (2023).
P. Jain, S. Shankar, and O.P. Thakur, Unveiling the impact of Ni2+/Y3+ co-substitution on the structural, dielectric, and impedance properties of multiferroic spinel ferrite for hydroelectric cell application. Phys. Chem. Chem. Phys. 25, 21280 (2023).
Article CAS PubMed Google Scholar
N. Sheoran, M. Saini, A. Kumar, V. Kumar, T. Kumar, and M. Sheoran, Size dependent morphology, magnetic and dielectric properties of BiFeO3 nanoparticles. MRS Adv. 4, 1659 (2019).
A. Wrzesińska, A. Khort, M. Witkowski, J. Szczytko, J. Ryl, J. Gurgul, D.S. Kharitonov, K. Łątka, T. Szumiata, and A. Wypych-Puszkarz, Structural, electrical, and magnetic study of La-, Eu-, and Er-doped bismuth ferrite nanomaterials obtained by solution combustion synthesis. Sci. Rep. 11, 22746 (2021).
Article PubMed PubMed Central Google Scholar
Z. Nazeer, I. Bibi, F. Majid, S. Kamal, M.I. Arshad, A. Ghafoor, N. Alwadai, A. Ali, A. Nazir, and M. Iqbal, Optical, photocatalytic, electrochemical, magnetic, dielectric, and ferroelectric properties of Cd-and Er-doped BiFeO3 prepared via a facile microemulsion route. ACS Omega 8, 24980 (2023).
Article CAS PubMed PubMed Central Google Scholar
K. Sarkar, H. Harsh, Z. Rahman, and V. Kumar, Enhancing the structural, optical, magnetic and ferroelectric properties of perovskite BiFeO3 through metal substitution. Chem. Phys. Impact 8, 100478 (2024).
M. Zhang, V. Koval, Y. Shi, Y. Yue, C. Jia, J. Wu, G. Viola, and H. Yan, Magnetoelectric coupling at microwave frequencies observed in bismuth ferrite-based multiferroics at room temperature. J. Mater. Sci. Tech. 137, 100 (2023).
P.R. Vanga, P. Reddy, and M. Ashok, The effect of lanthanides (Er, Gd and La) on the adsorption and photocatalytic performance of bismuth ferrite. MRS Adv. 8, 849 (2023).
P. Suresh and S. Srinath, Study of, structure and magnetic properties of rare earth doped BiFeO3. Phys. B Condens. Matter. 448, 281 (2014).
A. Pakalniškis, D. Zákutná, M. Gerina, G. Niaura, A. Zhaludkevich, D. Karpinsky, A. Normirzaev, R. Skaudžius, and A. Kareiva, Rhenium substitution effects on the structural, morphological and magnetic properties of bismuth ferrite BiFe(1–x)RexO3. Ceram. Int. 50, 10171 (2023).
S.D. Lakshmi, I.B. Shameem Banu, and R. Rajesh, Oxygen octahedra distortion-induced multiferroic properties of Er and Zr co-doped BiFeO3 nanoparticles. Int. J. Appl. Ceram. Tech. 20, 1939 (2023).
S.D. Lakshmi, I.B. Shameem Banu, R. Rajesh, M. Hafiz Mamat, and G.V. Vijayaraghavan, Tuning the multiferroism and magnetoelectric coupling of bismuth ferrite via substitutional defects by Er and transition metals (Nb/Zr/Y). J. Supercond. Nov. Magn.Supercond. Nov. Magn. 36, 1693 (2023).
G.S. Shahane, A. Kumar, M. Arora, R.P. Pant, and K. Lal, Synthesis and characterization of Ni–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 322, 1015 (2010).
F. Yan, G. Xing, R. Wang, and L. Li, Tailoring surface phase transition and magnetic behaviors in BiFeO3 via doping engineering. Sci. Rep. 5, 1 (2015).
Z. Ge, J. Zhu, H. Xue, and W. Mao, Structural phase transition and multiferric properties of Y Eu co-doped BiFe097Mn003O3 nanoparticles. J. Mater. Sci. Mater. Electron. 35, 36 (2024).
A.N. Ganie, M.U.D. Rather, and B. Want, Elucidating the structure, ferroic properties and magnetoelectric coupling in Dy-doped BiFeO3 nanostructures. J. Mater. Sci. Mater. Electron. 35, 168 (2024).
A. Wrzesinska, A. Khort, I. Bobowska, A. Busiakiewicz, and A. Wypych-Puszkarz, Influence of the La3+, Eu3+, and Er3+ doping on structural, optical, and electrical properties of BiFeO3 nanoparticles synthesized by microwave-assisted solution combustion method. J. Nanomater. 2019, 5394325 (2019).
S. Sharma, J.M. Siqueiros, and O.R. Herrera, Structural, dielectric, ferroelectric and optical properties of Er doped BiFeO3 nanoparticles. J. Alloys Compd. 853, 156979 (2021).
C. Anthonyraj, M. Muneeswaran, S. Gokul Raj, N.V. Giridharan, V. Sivakumar, and G. Senguttuvan, Effect of samarium doping on the structural, optical and magnetic properties of sol–gel processed BiFeO3 thin films. J. Mater. Sci. Mater. Electron. 26, 49 (2015).
C. Wu, J. Wei, and F. Kong, Effect of rare earth dopants on the morphologies and photocatalytic activities of BiFeO3 microcrystallites. J. Mater. Sci. Mater. Electron. 24, 1530 (2013).
K.S. Kumar, M. Ramanadha, A. Sudharani, S. Ramu, and R.P. Vijayalakshmi, Structural, magnetic, and photoluminescence properties of BiFeO3: Er-doped nanoparticles prepared by sol–gel technique. J. Supercond. Nov. Magn.Supercond. Nov. Magn. 32, 1035 (2019).
留言 (0)