Impact of B-site Substitution of Transition Metal (Fe and Mn) on the Structural, Electrical, and Magnetic Properties of Tungsten Bronze Ferroelectric Ceramic

K.C. Mathai, S. Vidya, A. John, S. Solomon, and J.K. Thomas, Structural, optical, and compactness characteristics of nanocrystalline CaNb2O6 synthesized through an autoigniting combustion method. Adv. Condens. Matter Phys. 2014, 1–6 (2014). https://doi.org/10.1155/2014/735878.

Article  CAS  Google Scholar 

P. Ganguly and A.K. Jha, Structural and electrical properties of Ba5−xCaxSmTi3Nb7O30 (x=0–5) ferroelectric ceramics. J. Alloy. Compd. 495, 7–12 (2010). https://doi.org/10.1016/j.jallcom.2010.01.118.

Article  CAS  Google Scholar 

X. Zhu, M. Fu, M.C. Stennett, P.M. Vilarinho, I. Levin, C.A. Randall, J. Gardner, F.D. Morrison, and I.M. Reaney, A crystal-chemical framework for relaxor versus normal ferroelectric behavior in tetragonal tungsten bronzes. Chem. Mater. 27, 3250–3261 (2015). https://doi.org/10.1021/acs.chemmater.5b00072.

Article  CAS  Google Scholar 

A. Rotaru and F.D. Morrison, Vogel-Fulcher analysis of relaxor dielectrics with the tetragonal tungsten bronze structure: Ba6MNb9O30 (M = Ga, Sc, In). J. Therm. Anal. Calorim.Calorim. 120, 1249–1259 (2015). https://doi.org/10.1007/s10973-014-4355-5.

Article  CAS  Google Scholar 

X.L. Zhu, K. Li, and X.M. Chen, Ferroelectric transition and low-temperature dielectric relaxations in filled tungsten bronzes. J. Am. Ceram. Soc. 97, 329–338 (2014). https://doi.org/10.1111/jace.12790.

Article  CAS  Google Scholar 

X.L. Zhu, S.Y. Wu, and X.M. Chen, Dielectric anomalies in (BaxSr1−x)4Nd2Ti4Nb6O30 ceramics with various radius differences between A1- and A2-site ions. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2800789.

Article  Google Scholar 

M.C. Stennett, I.M. Reaney, G.C. Miles, D.I. Woodward, A.R. West, C.A. Kirk, and I. Levin, Dielectric and structural studies of Ba2MTi2Nb3O15 (BMTNO15, M=Bi3+, La3+, Nd3+, Sm3+, Gd3+) tetragonal tungsten bronze-structured ceramics. J. Appl. Phys. (2007). https://doi.org/10.1063/1.2205720.

Article  Google Scholar 

P. Ganguly and A.K. Jha, Investigations of structural, dielectric and electrical behaviour of calcium substituted Ba5NdTi3Nb7O30 ferroelectric ceramics. Integr. Ferroelectr.. Ferroelectr. 115, 149–156 (2010). https://doi.org/10.1080/10584587.2010.488566.

Article  CAS  Google Scholar 

X.L. Zhu, X.Q. Liu, and X.M. Chen, Crystal structure and dielectric properties of Sr5RTi3Nb7O30 (R=La, Nd, Sm, and Eu) tungsten bronze ceramics. J. Am. Ceram. Soc. 94, 1829–1836 (2011). https://doi.org/10.1111/j.1551-2916.2010.04327.x.

Article  CAS  Google Scholar 

X. Li Zhu, Y. Bai, X.Q. Liu, and X. Ming Chen, Ferroelectric phase transition and low-temperature dielectric relaxations in Sr4(La1−xSmx)2Ti4Nb6O30 ceramics. J. Appl. Phys. (2011). https://doi.org/10.1063/1.3664857.

Article  Google Scholar 

K. Li, X.L. Zhu, X.Q. Liu, and X.M. Chen, Effects of Ca-substitution on structural, dielectric, and ferroelectric properties of Ba5SmTi3Nb7O30 tungsten bronze ceramics. Appl. Phys. Lett. 101, 042906 (2012). https://doi.org/10.1063/1.4739841.

Article  CAS  Google Scholar 

R.N.P. Choudhary, S.R. Shannigrahi, and A.K. Singh, Ferroelectric phase transition in Ba5RTi3Nb7O30 [R=Nd, Eu, Gd] ceramics. Bull. Mater. Sci. 22, 975–979 (1999). https://doi.org/10.1007/bf02745689.

Article  CAS  Google Scholar 

P.P. Rao, S.K. Ghosh, and P. Koshy, Dielectric and ferroelectric properties of Ba3M3Ti5Nb5O30 (M= Sm or Y) ceramics. J. Mater. Sci.: Mater. Electr. 12, 729–732 (2001). https://doi.org/10.1023/A:1012944927315.

Article  CAS  Google Scholar 

S.R. Shannigrahi, R.N.P. Choudhary, A. Kumar, and H.N. Acharya, Phase transition in Ba5RTi3Nb7O30 (R = Dy, Sm) ferroelectric ceramics. J. Phys. Chem. Solids 59, 737–742 (1998). https://doi.org/10.1016/s0022-3697(97)00217-5.

Article  CAS  Google Scholar 

X.H. Zheng and X.M. Chen, Dielectric ceramics with tungsten-bronze structure in the BaO–Nd2O3–TiO2–Nb2O5 system. J. Mater. Res. 17, 1664–1670 (2002). https://doi.org/10.1557/jmr.2002.0245.

Article  CAS  Google Scholar 

P.R. Das, R.N.P. Choudhary, and B.K. Samantray, Diffuse ferroelectric phase transition in Na2PbSm2W2Ti4Nb4O30 ceramics. Mater. Chem. Phys. 101, 228–233 (2007). https://doi.org/10.1016/j.matchemphys.2006.04.005.

Article  CAS  Google Scholar 

B. Behera, P. Nayak, and R.N.P. Choudhary, Structural, dielectric and electrical properties of NaBa2X5O15 (X=Nb and Ta) ceramics. Mater. Lett. 59, 3489–3493 (2005). https://doi.org/10.1016/j.matlet.2005.06.019.

Article  CAS  Google Scholar 

J. Yeon, P.S. Halasyamani, and I.V. Kityk, Nonlinear optical effects in nano-sized ferroelectrics Sr6Ti2Nb(Ta)8O30. Mater. Lett. 62, 1082–1084 (2008). https://doi.org/10.1016/j.matlet.2007.07.048.

Article  CAS  Google Scholar 

V. Massarotti, D. Capsoni, M. Bini, C.B. Azzoni, M.C. Mozzati, P. Galinetto, and G. Chiodelli, Structural and spectroscopic properties of pure and doped Ba6Ti2Nb8O30 tungsten bronze. J. Phys. Chem. B 110, 17798–17805 (2006). https://doi.org/10.1021/jp063382p.

Article  CAS  PubMed  Google Scholar 

X.H. Zheng and X.M. Chen, Crystal structure and dielectric properties of ferroelectric ceramics in the BaO-Sm2O3-TiO2-Nb2O5 system. Solid State Commun.Commun. 125, 449–454 (2003). https://doi.org/10.1016/s0038-1098(02)00709-3.

Article  CAS  Google Scholar 

L. Fang, H. Zhang, J.B. Yan, and W.M. Yang, Synthesis and dielectric properties of a new niobate Ba5NdTi3Nb7O30. Chin. J. Inorg. Chem. 18(11), 1131–1134 (2002).

CAS  Google Scholar 

A. Bendahhou, P. Marchet, A. El-Houssaine, S. El Barkany, and M. Abou-Salama, Relationship between structural and dielectric properties of Zn-substituted Ba5CaTi2−xZnxNb8O30 tetragonal tungsten bronze. CrystEngComm 23, 163–173 (2021). https://doi.org/10.1039/d0ce01561j.

Article  CAS  Google Scholar 

A. Bendahhou, P. Marchet, S. El Barkany, and M. Abou-salama, Structural and impedance spectroscopic study of Zn-substituted Ba5CaTi2Nb8O30 tetragonal tungsten bronze ceramics. J. Alloy. Compd. 882, 160716 (2021). https://doi.org/10.1016/j.jallcom.2021.160716.

Article  CAS  Google Scholar 

S. Jindal, A. Vasishth, S. Devi, N. Aggarwal, and K.K. Kushwah, Investigation of structural, ferroelectric and magnetic properties of iron doped tungsten bronze multiferroic ceramics. Physica B B 595, 412341 (2020). https://doi.org/10.1016/j.physb.2020.412341.

Article  CAS  Google Scholar 

S. Jindal, A. Vashishth, S. Devi, and K. Kumar Kushwah, Prospective features of multiferroic tungsten bronze ceramics and its futuristic applications. Mater. Today: Proc. 51, 1252–1258 (2022). https://doi.org/10.1016/j.matpr.2021.07.351.

Article  CAS  Google Scholar 

S. Jindal, N. Aggarwal, A. Vasishth, and A. Sharma, Investigation of tungsten bronze ferroelectric ceramic by conventional and mechanical activation processes. Mater. Today: Proc. 68, 886–890 (2022). https://doi.org/10.1016/j.matpr.2022.06.424.

Article  CAS  Google Scholar 

S. Jindal, S. Devi, A. Vasishth, K.M. Batoo, and G. Kumar, Interdependence between electrical and magnetic properties of polycrystalline cobalt-substituted tungsten bronze multiferroic ceramics. J. Adv. Dielectr.Dielectr. 08, 1850002 (2018). https://doi.org/10.1142/s2010135x18500029.

Article  CAS  Google Scholar 

P. Sahoo, A. Panigrahi, S. Patri, and R. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R=Sm, Dy) ceramics. Open Phys. (2008). https://doi.org/10.2478/s11534-008-0112-3.

Article  Google Scholar 

A. Bendahhou, K. Chourti, R. El Bouayadi, S. El Barkany, and M. Abou-Salama, Structural, dielectric and impedance spectroscopy analysis of Ba5CaTi1.94Zn0.06Nb8O30ferroelectric ceramic. RSC Adv. 10, 28007–28018 (2020). https://doi.org/10.1039/d0ra05163b.

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, and K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63–73 (2017). https://doi.org/10.1016/j.materresbull.2017.04.013.

Article  CAS  Google Scholar 

Y.J. Wong, J. Hassan, and M. Hashim, Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction. J. Alloy. Compd. 571, 138–144 (2013). https://doi.org/10.1016/j.jallcom.2013.03.123.

Article  CAS  Google Scholar 

P. Kamkum, N. Atiwongsangthong, R. Muanghlua, and N. Vittayakorn, Application of chicken eggshell waste as a starting material for synthesizing calcium niobate (Ca4Nb2O9) powder. Ceram. Int. 41, S69–S75 (2015).

留言 (0)

沒有登入
gif