Agosta S, Magnago D, Tyler S, Grossman E, Galante E, Ferraro F, Battelli L (2017) The pivotal role of the right parietal lobe in temporal attention. J Cogn Neurosci 29(5):805–815. https://doi.org/10.1162/jocn
Albouy P, Weiss A, Baillet S, Zatorre RJ (2017) Selective entrainment of Theta oscillations in the dorsal Stream Causally enhances auditory Working Memory performance. Neuron 94(1):193–206e5. https://doi.org/10.1016/j.neuron.2017.03.015
Article CAS PubMed Google Scholar
Albouy P, Benjamin L, Morillon B, Zatorre RJ (2020) Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367(6481):16. https://doi.org/10.1126/science.1252826
Alexander G, DeLong MR, Strick PL (1986) Parallel Organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9(1):357–381. https://doi.org/10.1146/annurev.neuro.9.1.357
Article CAS PubMed Google Scholar
Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E (2017) Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum Brain Mapp 38(6):2955–2970. https://doi.org/10.1002/hbm.23565
Article PubMed PubMed Central Google Scholar
Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125:1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019
Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888. https://doi.org/10.1016/S1053-8119(03)00336-7
Ara A, Marco-Pallarés J (2020) Fronto-temporal theta phase-synchronization underlies music-evoked pleasantness. NeuroImage 212(February):0–7. https://doi.org/10.1016/j.neuroimage.2020.116665
Ara A, Marco-Pallarés J (2021) Different theta connectivity patterns underlie pleasantness evoked by familiar and unfamiliar music. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-98033-5
Araneda R, Renier L, Ebner-Karestinos D, Dricot L, De Volder AG (2016) Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream. Eur J Neurosci 45:1439–1450. https://doi.org/10.1017/CBO9781107415324.004
Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC (2014) The insight ToolKit image registration framework. Front Neuroinformatics 8(APR):1–13. https://doi.org/10.3389/fninf.2014.00044
Baer LH, Park MTM, Bailey Ja, Chakravarty MM, Li KZH, Penhune VB (2015) Regional cerebellar volumes are related to early musical training and finger tapping performance. NeuroImage 109:130–139. https://doi.org/10.1016/j.neuroimage.2014.12.076
Article CAS PubMed Google Scholar
Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, Andersson JLR (2019) Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. NeuroImage 184May 2018:801–812. https://doi.org/10.1016/j.neuroimage.2018.09.073
Battelli L, Pascual-Leone A, Cavanagh P (2007) The when pathway of the right parietal lobe. Trends Cogn Sci 11(5):204–210. https://doi.org/10.1016/j.tics.2007.03.001
Article PubMed PubMed Central Google Scholar
Belfi AM, Evans E, Heskje J, Bruss J, Tranel D (2017) Musical anhedonia after focal brain damage. Neuropsychologia 97(January):29–37. https://doi.org/10.1016/j.neuropsychologia.2017.01.030
Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. https://doi.org/10.1038/nn1516
Article CAS PubMed Google Scholar
Bermudez P, Zatorre RJ (2005) Differences in gray matter between musicians and nonmusicians. Ann N Y Acad Sci 10602005:395–399. https://doi.org/10.1196/annals.1360.057
Bianco R, Novembre G, Keller PE, Seung-Goo K, Scharf F, Friederici A, Sammler D (2016) Neural networks for harmonic structure in music perception and action. NeuroImage 142:454–464. https://doi.org/10.1016/j.neuroimage.2016.08.025
Article CAS PubMed Google Scholar
Bianco R, Novembre G, Ringer H, Kohler N, Keller PE, Villringer A, Sammler D (2021) Lateral prefrontal cortex is a hub for music production from structural rules to movements. Cereb Cortex 1–18. https://doi.org/10.1093/cercor/bhab454
Blecher T, Tal I, Ben-Shachar M (2016) White matter microstructural properties correlate with sensorimotor synchronization abilities. NeuroImage 138:1–12. https://doi.org/10.1016/j.neuroimage.2016.05.022
Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 98(20):11818–11823. https://doi.org/10.1073/pnas.191355898
Article CAS PubMed PubMed Central Google Scholar
Brown S, Martinez MJ, Parsons LM (2004) Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport 15(13):2033–2037. https://doi.org/10.1097/00001756-200409150-00008
Brown RM, Zatorre RJ, Penhune VB (2015) Expert music performance: cognitive, neural, and developmental bases. Prog Brain Res 57–86. https://doi.org/10.1016/bs.pbr.2014.11.021
Cannon JJ, Patel AD (2020) How beat perception co-opts Motor Neurophysiology. Trends Cogn Sci 25(2):137–150. https://doi.org/10.1016/j.tics.2020.11.002
Article PubMed PubMed Central Google Scholar
Céspedes-Guevara J, Dibben N (2022) The role of Embodied Simulation and Visual Imagery in Emotional Contagion with Music. Music Sci 5(122):1–27. https://doi.org/10.1177/20592043221093836
Chabin T, Gabriel D, Chansophonkul T, Michelant L, Joucla C, Haffen E, Pazart L (2020) Cortical patterns of pleasurable musical chills revealed by high-density EEG. Front NeuroSci 14(November):1–11. https://doi.org/10.3389/fnins.2020.565815
Chauvigné LaS, Gitau KM, Brown S (2014) The neural basis of audiomotor entrainment: an ALE meta-analysis. Front Hum Neurosci 8(September):776. https://doi.org/10.3389/fnhum.2014.00776
Article PubMed PubMed Central Google Scholar
Chen JL, Penhune VB, Zatorre RJ (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18(12):2844–2854. https://doi.org/10.1093/cercor/bhn042
Cheng L, Lin Y, Yeh T, Tseng WI, Chen L (2022) Long-term musical training induces white matter plasticity in emotion and language networks. Hum Brain Mapp September 2020:1–13. https://doi.org/10.1002/hbm.26054
Cheung VKM, Harrison PMC, Meyer L, Pearce MT, Haynes J-D, Koelsch S (2019) Uncertainty and Surprise jointly predict musical pleasure and Amygdala, Hippocampus, and auditory cortex activity. Curr Biol 1–9. https://doi.org/10.1016/j.cub.2019.09.067
Coull JT, Davranche K, Nazarian B, Vidal F (2013) Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia 51(2):309–319. https://doi.org/10.1016/j.neuropsychologia.2012.08.017
Criscuolo A, Pando-Naude V, Bonetti L, Vuust P, Brattico E (2022) An ALE meta-analytic review of musical expertise. Sci Rep 12(1):1–17. https://doi.org/10.1038/s41598-022-14959-4
de Manzano Ö, Ullén F (2018) Same genes, different brains: neuroanatomical differences between monozygotic twins discordant for musical training. Cereb Cortex 28(1):387–394. https://doi.org/10.1093/cercor/bhx299
Dhollander T, Raffelt DA, Connelly A (2016) Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image Brain network disruption in chronic stroke patients View project Review of Fixel-Based Analysis (FBA) of diffusion MRI (.
留言 (0)