Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians

Agosta S, Magnago D, Tyler S, Grossman E, Galante E, Ferraro F, Battelli L (2017) The pivotal role of the right parietal lobe in temporal attention. J Cogn Neurosci 29(5):805–815. https://doi.org/10.1162/jocn

Article  PubMed  Google Scholar 

Albouy P, Weiss A, Baillet S, Zatorre RJ (2017) Selective entrainment of Theta oscillations in the dorsal Stream Causally enhances auditory Working Memory performance. Neuron 94(1):193–206e5. https://doi.org/10.1016/j.neuron.2017.03.015

Article  CAS  PubMed  Google Scholar 

Albouy P, Benjamin L, Morillon B, Zatorre RJ (2020) Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367(6481):16. https://doi.org/10.1126/science.1252826

Article  CAS  Google Scholar 

Alexander G, DeLong MR, Strick PL (1986) Parallel Organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9(1):357–381. https://doi.org/10.1146/annurev.neuro.9.1.357

Article  CAS  PubMed  Google Scholar 

Alluri V, Toiviainen P, Burunat I, Kliuchko M, Vuust P, Brattico E (2017) Connectivity patterns during music listening: evidence for action-based processing in musicians. Hum Brain Mapp 38(6):2955–2970. https://doi.org/10.1002/hbm.23565

Article  PubMed  PubMed Central  Google Scholar 

Andersson JLR, Sotiropoulos SN (2016) An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125:1063–1078. https://doi.org/10.1016/j.neuroimage.2015.10.019

Article  PubMed  Google Scholar 

Andersson JLR, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2):870–888. https://doi.org/10.1016/S1053-8119(03)00336-7

Article  PubMed  Google Scholar 

Ara A, Marco-Pallarés J (2020) Fronto-temporal theta phase-synchronization underlies music-evoked pleasantness. NeuroImage 212(February):0–7. https://doi.org/10.1016/j.neuroimage.2020.116665

Article  Google Scholar 

Ara A, Marco-Pallarés J (2021) Different theta connectivity patterns underlie pleasantness evoked by familiar and unfamiliar music. Sci Rep 11(1):1–9. https://doi.org/10.1038/s41598-021-98033-5

Article  CAS  Google Scholar 

Araneda R, Renier L, Ebner-Karestinos D, Dricot L, De Volder AG (2016) Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream. Eur J Neurosci 45:1439–1450. https://doi.org/10.1017/CBO9781107415324.004

Article  PubMed  Google Scholar 

Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC (2014) The insight ToolKit image registration framework. Front Neuroinformatics 8(APR):1–13. https://doi.org/10.3389/fninf.2014.00044

Article  Google Scholar 

Baer LH, Park MTM, Bailey Ja, Chakravarty MM, Li KZH, Penhune VB (2015) Regional cerebellar volumes are related to early musical training and finger tapping performance. NeuroImage 109:130–139. https://doi.org/10.1016/j.neuroimage.2014.12.076

Article  CAS  PubMed  Google Scholar 

Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, Sotiropoulos SN, Andersson JLR (2019) Automated quality control for within and between studies diffusion MRI data using a non-parametric framework for movement and distortion correction. NeuroImage 184May 2018:801–812. https://doi.org/10.1016/j.neuroimage.2018.09.073

Article  Google Scholar 

Battelli L, Pascual-Leone A, Cavanagh P (2007) The when pathway of the right parietal lobe. Trends Cogn Sci 11(5):204–210. https://doi.org/10.1016/j.tics.2007.03.001

Article  PubMed  PubMed Central  Google Scholar 

Belfi AM, Evans E, Heskje J, Bruss J, Tranel D (2017) Musical anhedonia after focal brain damage. Neuropsychologia 97(January):29–37. https://doi.org/10.1016/j.neuropsychologia.2017.01.030

Article  PubMed  Google Scholar 

Bengtsson SL, Nagy Z, Skare S, Forsman L, Forssberg H, Ullén F (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci 8(9):1148–1150. https://doi.org/10.1038/nn1516

Article  CAS  PubMed  Google Scholar 

Bermudez P, Zatorre RJ (2005) Differences in gray matter between musicians and nonmusicians. Ann N Y Acad Sci 10602005:395–399. https://doi.org/10.1196/annals.1360.057

Article  Google Scholar 

Bianco R, Novembre G, Keller PE, Seung-Goo K, Scharf F, Friederici A, Sammler D (2016) Neural networks for harmonic structure in music perception and action. NeuroImage 142:454–464. https://doi.org/10.1016/j.neuroimage.2016.08.025

Article  CAS  PubMed  Google Scholar 

Bianco R, Novembre G, Ringer H, Kohler N, Keller PE, Villringer A, Sammler D (2021) Lateral prefrontal cortex is a hub for music production from structural rules to movements. Cereb Cortex 1–18. https://doi.org/10.1093/cercor/bhab454

Blecher T, Tal I, Ben-Shachar M (2016) White matter microstructural properties correlate with sensorimotor synchronization abilities. NeuroImage 138:1–12. https://doi.org/10.1016/j.neuroimage.2016.05.022

Article  PubMed  Google Scholar 

Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA 98(20):11818–11823. https://doi.org/10.1073/pnas.191355898

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brown S, Martinez MJ, Parsons LM (2004) Passive music listening spontaneously engages limbic and paralimbic systems. NeuroReport 15(13):2033–2037. https://doi.org/10.1097/00001756-200409150-00008

Article  PubMed  Google Scholar 

Brown RM, Zatorre RJ, Penhune VB (2015) Expert music performance: cognitive, neural, and developmental bases. Prog Brain Res 57–86. https://doi.org/10.1016/bs.pbr.2014.11.021

Cannon JJ, Patel AD (2020) How beat perception co-opts Motor Neurophysiology. Trends Cogn Sci 25(2):137–150. https://doi.org/10.1016/j.tics.2020.11.002

Article  PubMed  PubMed Central  Google Scholar 

Céspedes-Guevara J, Dibben N (2022) The role of Embodied Simulation and Visual Imagery in Emotional Contagion with Music. Music Sci 5(122):1–27. https://doi.org/10.1177/20592043221093836

Article  Google Scholar 

Chabin T, Gabriel D, Chansophonkul T, Michelant L, Joucla C, Haffen E, Pazart L (2020) Cortical patterns of pleasurable musical chills revealed by high-density EEG. Front NeuroSci 14(November):1–11. https://doi.org/10.3389/fnins.2020.565815

Article  Google Scholar 

Chauvigné LaS, Gitau KM, Brown S (2014) The neural basis of audiomotor entrainment: an ALE meta-analysis. Front Hum Neurosci 8(September):776. https://doi.org/10.3389/fnhum.2014.00776

Article  PubMed  PubMed Central  Google Scholar 

Chen JL, Penhune VB, Zatorre RJ (2008) Listening to musical rhythms recruits motor regions of the brain. Cereb Cortex 18(12):2844–2854. https://doi.org/10.1093/cercor/bhn042

Article  PubMed  Google Scholar 

Cheng L, Lin Y, Yeh T, Tseng WI, Chen L (2022) Long-term musical training induces white matter plasticity in emotion and language networks. Hum Brain Mapp September 2020:1–13. https://doi.org/10.1002/hbm.26054

Article  Google Scholar 

Cheung VKM, Harrison PMC, Meyer L, Pearce MT, Haynes J-D, Koelsch S (2019) Uncertainty and Surprise jointly predict musical pleasure and Amygdala, Hippocampus, and auditory cortex activity. Curr Biol 1–9. https://doi.org/10.1016/j.cub.2019.09.067

Coull JT, Davranche K, Nazarian B, Vidal F (2013) Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia 51(2):309–319. https://doi.org/10.1016/j.neuropsychologia.2012.08.017

Article  PubMed  Google Scholar 

Criscuolo A, Pando-Naude V, Bonetti L, Vuust P, Brattico E (2022) An ALE meta-analytic review of musical expertise. Sci Rep 12(1):1–17. https://doi.org/10.1038/s41598-022-14959-4

Article  CAS  Google Scholar 

de Manzano Ö, Ullén F (2018) Same genes, different brains: neuroanatomical differences between monozygotic twins discordant for musical training. Cereb Cortex 28(1):387–394. https://doi.org/10.1093/cercor/bhx299

Article  PubMed  Google Scholar 

Dhollander T, Raffelt DA, Connelly A (2016) Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image Brain network disruption in chronic stroke patients View project Review of Fixel-Based Analysis (FBA) of diffusion MRI (.

留言 (0)

沒有登入
gif