Steinhart, Z. & Angers, S. Wnt signaling in development and tissue homeostasis. Development 145, dev146589 (2018).
Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).
Article CAS PubMed Google Scholar
Nusse, R. et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell 64, 231 (1991).
Article CAS PubMed Google Scholar
Nusse, R. & Varmus, H. E. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 31, 99–109 (1982).
Article CAS PubMed Google Scholar
Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).
Article CAS PubMed Google Scholar
Rijsewijk, F. et al. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657 (1987).
Article CAS PubMed Google Scholar
Siegfried, E., Chou, T. B. & Perrimon, N. wingless signaling acts through zeste-white 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell 71, 1167–1179 (1992).
Article CAS PubMed Google Scholar
Noordermeer, J., Klingensmith, J., Perrimon, N. & Nusse, R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature 367, 80–83 (1994).
Article CAS PubMed Google Scholar
Peifer, M., Sweeton, D., Casey, M. & Wieschaus, E. Wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120, 369–380 (1994).
Article CAS PubMed Google Scholar
McMahon, A. P. & Moon, R. T. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 58, 1075–1084 (1989).
Article CAS PubMed Google Scholar
Munoz-Descalzo, S., Hadjantonakis, A. K. & Arias, A. M. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin. Cell Dev. Biol. 47-48, 101–109 (2015).
Article CAS PubMed PubMed Central Google Scholar
Rudnicki, M. A. & Williams, B. O. Wnt signaling in bone and muscle. Bone 80, 60–66 (2015).
Article CAS PubMed PubMed Central Google Scholar
Lojk, J. & Marc, J. Roles of non-canonical wnt signalling pathways in bone biology. Int. J. Mol. Sci. 22 (2021).
Kinzler, K. W. et al. Identification of FAP locus genes from chromosome 5q21. Science 253, 661–665 (1991).
Article CAS PubMed Google Scholar
Nishisho, I. et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science 253, 665–669 (1991).
Article CAS PubMed Google Scholar
Rubinfeld, B. et al. Association of the APC gene product with beta-catenin. Science 262, 1731–1734 (1993).
Article CAS PubMed Google Scholar
Su, L. K., Vogelstein, B. & Kinzler, K. W. Association of the APC tumor suppressor protein with catenins. Science 262, 1734–1737 (1993).
Article CAS PubMed Google Scholar
Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).
Article CAS PubMed Google Scholar
Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).
Article CAS PubMed Google Scholar
Ackers, I. & Malgor, R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc. Dis. Res. 15, 3–13 (2018).
Krishnamurthy, N. & Kurzrock, R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 62, 50–60 (2018).
Article CAS PubMed Google Scholar
Miller, J. R. The Wnts. Genome Biol. 3, Reviews3001 (2002).
Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).
Article CAS PubMed Google Scholar
Takada, R. et al. Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev. Cell 11, 791–801 (2006).
Article CAS PubMed Google Scholar
Kurayoshi, M., Yamamoto, H., Izumi, S. & Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J. 402, 515–523 (2007).
Article CAS PubMed PubMed Central Google Scholar
Du, S. J. et al. Identification of distinct classes and functional domains of Wnts through expression of wild-type and chimeric proteins in Xenopus embryos. Mol. Cell Biol. 15, 2625–2634 (1995).
Article CAS PubMed PubMed Central Google Scholar
Tao, Q. et al. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120, 857–871 (2005).
Article CAS PubMed Google Scholar
Toyama, T. et al. Noncanonical Wnt11 inhibits hepatocellular carcinoma cell proliferation and migration. Mol. Cancer Res. 8, 254–265 (2010).
Article CAS PubMed PubMed Central Google Scholar
Tian, S. et al. Secreted AGR2 promotes invasion of colorectal cancer cells via Wnt11-mediated non-canonical Wnt signaling. Exp. Cell Res. 364, 198–207 (2018).
Article CAS PubMed Google Scholar
Mikels, A. J. & Nusse, R. Wnts as ligands: processing, secretion and reception. Oncogene 25, 7461–7468 (2006).
Article CAS PubMed Google Scholar
Hsieh, J. C., Rattner, A., Smallwood, P. M. & Nathans, J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc. Natl. Acad. Sci. USA 96, 3546–3551 (1999).
Article CAS PubMed PubMed Central Google Scholar
Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).
Article CAS PubMed Google Scholar
Grumolato, L. et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24, 2517–2530 (2010).
留言 (0)