WNT inhibitory factor 1 (WIF1) is a novel fusion partner of RUNX family transcription factor 1 (RUNX1) in acute myeloid leukemia with t(12;21)(q14;q22)

Al-Harbi S, Aljurf M, Mohty M, Almohareb F, Ahmed SOA (2020) An update on the molecular pathogenesis and potential therapeutic targeting of AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1. Blood Adv 4(1):229–238

Swart LE, Heidenreich O (2021) The RUNX1/RUNX1T1 network: translating insights into therapeutic options. Exp Hematol 94:1–10

Article  PubMed  PubMed Central  Google Scholar 

Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel WE, van der Reijden B, Quelle DE, Rowley JD et al (2002) The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Nat Med 8(7):743–750

Article  PubMed  Google Scholar 

Yao H, Pan J, Wu C, Shen H, Xie J, Wang Q, Wen L, Wang Q, Ma L, Wu L et al (2015) Transcriptome sequencing reveals CHD1 as a novel fusion partner of RUNX1 in acute myeloid leukemia with t(5;21)(q21;q22). Mol Cancer 14:81

Article  PubMed  PubMed Central  Google Scholar 

Yang RY, Yang CX, Lang XP, Duan LJ, Wang RJ, Zhou W, Wu GS, Li Y, Qian T, Xiao S et al (2020) Identification of a novel RUNX1-TACC1 fusion transcript in acute myeloid leukaemia. Br J Haematol 189(2):e52–e56

Article  PubMed  Google Scholar 

Ramsey H, Zhang DE, Richkind K, Burcoglu-O’Ral A, Hromas R (2003) Fusion of AML1/Runx1 to copine VIII, a novel member of the copine family, in an aggressive acute myelogenous leukemia with t(12;21) translocation. Leukemia 17(8):1665–1666

Article  PubMed  Google Scholar 

Imagama S, Abe A, Suzuki M, Hayakawa F, Katsumi A, Emi N, Kiyoi H, Naoe T (2007) LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22). Eur J Haematol 79(1):25–31

Article  PubMed  Google Scholar 

Asou N, Yanagida M, Huang L, Yamamoto M, Shigesada K, Mitsuya H, Ito Y, Osato M (2007) Concurrent transcriptional deregulation of AML1/RUNX1 and GATA factors by the AML1-TRPS1 chimeric gene in t(8;21)(q24;q22) acute myeloid leukemia. Blood 109(9):4023–4027

Article  PubMed  Google Scholar 

De Braekeleer E, Douet-Guilbert N, Morel F, Le Bris MJ, Ferec C, De Braekeleer M (2011) RUNX1 translocations and fusion genes in malignant hemopathies. Future Oncol 7(1):77–91

Article  PubMed  Google Scholar 

Nie D, Zhang J, Xiong M, Wang F, Cao P, Zhang Y, Chen X, Chen J, Ma X, Zhou X et al (2020) Complete remission of refractory juvenile acute myeloid leukaemia with RUNX1-PRDM16 in Bloom syndrome after haematopoietic stem cell transplantation. Br J Haematol 190(3):e166–e169

Article  PubMed  Google Scholar 

Abe A, Yamamoto Y, Katsumi A, Yamamoto H, Okamoto A, Inaguma Y, Iriyama C, Tokuda M, Okamoto M, Emi N et al (2020) Truncated RUNX1 generated by the fusion of RUNX1 to antisense GRIK2 via a cryptic chromosome translocation enhances sensitivity to granulocyte colony-stimulating factor. Cytogenet Genome Res 160(5):255–263

Article  PubMed  Google Scholar 

Wang H, Chen X, Xu Z, Tan Y, Qi X, Zhang L, Xu A, Ren F (2017) Identification of a novel fusion gene, RUNX1-PRPF38A, in acute myeloid leukemia. Int J Lab Hematol 39(4):e90–e93

Article  PubMed  Google Scholar 

Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ, Kirchner A, Huang L, Chaturvedi A, Wichmann M et al (2014) Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123(6):914–920

Article  PubMed  Google Scholar 

Challen GA, Goodell MA (2010) Runx1 isoforms show differential expression patterns during hematopoietic development but have similar functional effects in adult hematopoietic stem cells. Exp Hematol 38(5):403–416

Article  PubMed  PubMed Central  Google Scholar 

van der Weyden L, Giotopoulos G, Rust AG, Matheson LS, van Delft FW, Kong J, Corcoran AE, Greaves MF, Mullighan CG, Huntly BJ et al (2011) Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 118(4):1041–1051

Article  PubMed  Google Scholar 

Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, Spiekermann K, Humphries RK, Schnittger S, Kern W et al (2005) The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 115(8):2159–2168

Article  PubMed  PubMed Central  Google Scholar 

Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125(9):1367–1376

Article  PubMed  PubMed Central  Google Scholar 

Huber S, Haferlach T, Meggendorfer M, Hutter S, Hoermann G, Baer C, Kern W, Haferlach C (2022) SF3B1 mutations in AML are strongly associated with MECOM rearrangements and may be indicative of an MDS pre-phase. Leukemia 36(12):2927–2930

Article  PubMed  PubMed Central  Google Scholar 

Smith JS, Lappin KM, Craig SG, Liberante FG, Crean CM, McDade SS, Thompson A, Mills KI, Savage KI (2020) Chronic loss of STAG2 leads to altered chromatin structure contributing to de-regulated transcription in AML. J Transl Med 18(1):339

Article  PubMed  PubMed Central  Google Scholar 

Thota S, Viny AD, Makishima H, Spitzer B, Radivoyevitch T, Przychodzen B, Sekeres MA, Levine RL, Maciejewski JP (2014) Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 124(11):1790–1798

Article  PubMed  PubMed Central  Google Scholar 

Hurtado R, Guirales F, Tirado CA (2021) ASXL1 gene in AML. J Assoc Genet Technol 47(2):60–68

PubMed  Google Scholar 

Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, Langabeer SE, Kottaridis PD, Moorman AV, Burnett AK et al (2005) RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 106(6):2113–2119

Article  PubMed  Google Scholar 

Boudry-Labis E, Roche-Lestienne C, Nibourel O, Boissel N, Terre C, Perot C, Eclache V, Gachard N, Tigaud I, Plessis G et al (2013) Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia. Am J Hematol 88(4):306–311

Article  PubMed  Google Scholar 

Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398(6726):431–436

Article  PubMed  Google Scholar 

Steinhart Z, Angers S (2018) Wnt signaling in development and tissue homeostasis. Development 145(11). https://doi.org/10.1242/dev.146589

Zhang Y, Wang X (2020) Targeting the Wnt/beta-catenin signaling pathway in cancer. J Hematol Oncol 13(1):165

Article  PubMed  PubMed Central  Google Scholar 

Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, Kristiansen G, Hsieh JC, Hofstaedter F, Hartmann A et al (2003) WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 201(2):204–212

Article  PubMed  Google Scholar 

Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, Liao WW, Reynolds SM, Wyczalkowski MA, Yao L et al (2018) Driver fusions and their implications in the development and treatment of human cancers. Cell Rep 23(1):227-238 e223

Article  PubMed  PubMed Central  Google Scholar 

Hu X, Wang Q, Tang M, Barthel F, Amin S, Yoshihara K, Lang FM, Martinez-Ledesma E, Lee SH, Zheng S et al (2018) TumorFusions: an integrative resource for cancer-associated transcript fusions. Nucleic Acids Res 46(D1):D1144–D1149

Article  PubMed  Google Scholar 

Afshari MK, Fehr A, Nevado PT, Andersson MK, Stenman G (2020) Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes Chromosomes Cancer 59(11):652–660

Article  PubMed  Google Scholar 

Sood R, Kamikubo Y, Liu P (2017) Role of RUNX1 in hematological malignancies. Blood 129(15):2070-2082.

留言 (0)

沒有登入
gif