Synergistic interplay between radiation and microgravity in spaceflight-related immunological health risks

Willey JS, Britten RA, Blaber E, Tahimic CGT, Chancellor J, Mortreux M, et al. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. J Environ Sci Health C Toxicol Carcinog. 2021;39(2):129–79.

CAS  PubMed  PubMed Central  Google Scholar 

Bezdan D, Grigorev K, Meydan C, Pelissier Vatter FA, Cioffi M, Rao V, et al. Cell-free DNA (cfDNA) and exosome profiling from a year-long human spaceflight reveals circulating biomarkers. iScience. 2020;23(12):101844.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436).

Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, et al. Multi-omic, Single-Cell, and biochemical profiles of astronauts Guide Pharmacological Strategies for returning to gravity. Cell Rep. 2020;33(10):108429.

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, et al. Comprehensive multi-omics Analysis reveals mitochondrial stress as a Central Biological hub for spaceflight impact. Cell. 2020;183(5):1185–e20120.

Article  PubMed  PubMed Central  Google Scholar 

Gupta U, Baig S, Majid A, Bell SM. The neurology of space flight; how does space flight effect the human nervous system? Life Sci Space Res (Amst). 2023;36:105–15.

Article  PubMed  Google Scholar 

Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity. 2017;3:14.

Article  PubMed  PubMed Central  Google Scholar 

Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res. 2014;34(10):778–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krieger SS, Zwart SR, Mehta S, Wu H, Simpson RJ, Smith SM, et al. Alterations in saliva and plasma cytokine concentrations during long-duration spaceflight. Front Immunol. 2021;12:725748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A et al. Synergistic effects of Weightlessness, Isoproterenol, and Radiation on DNA damage response and cytokine production in Immune cells. Int J Mol Sci. 2018;19(11).

Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol. 2013;33(2):456–65.

Article  CAS  PubMed  Google Scholar 

Paul AM, Cheng-Campbell M, Blaber EA, Anand S, Bhattacharya S, Zwart SR, et al. Beyond low-earth orbit: characterizing Immune and microRNA differentials following simulated deep spaceflight conditions in mice. iScience. 2020;23(12):101747.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS ONE. 2012;7(9):e44329.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23.

Article  PubMed  PubMed Central  Google Scholar 

Mulavara AP, Peters BT, Miller CA, Kofman IS, Reschke MF, Taylor LC, et al. Physiological and functional alterations after spaceflight and Bed Rest. Med Sci Sports Exerc. 2018;50(9):1961–80.

Article  PubMed  PubMed Central  Google Scholar 

Buckey JC, Thamer S, Lan M. Bone loss and kidney stone risk in weightlessness. Curr Opin Nephrol Hypertens. 2023;32(2):172–6.

Article  PubMed  Google Scholar 

Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.

Article  PubMed  Google Scholar 

Sonnenfeld G. Animal models for the study of the effects of spaceflight on the immune system. Adv Space Res. 2003;32(8):1473–6.

Article  CAS  PubMed  Google Scholar 

Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985). 2002;92(4):1367–77.

Article  PubMed  Google Scholar 

Farley A, Gnyubkin V, Vanden-Bossche A, Laroche N, Neefs M, Baatout S, et al. Unloading-Induced cortical bone loss is exacerbated by low-dose irradiation during a simulated Deep Space Exploration Mission. Calcif Tissue Int. 2020;107(2):170–9.

Article  CAS  PubMed  Google Scholar 

Mortreux M, Nagy JA, Ko FC, Bouxsein ML, Rutkove SB. A novel partial gravity ground-based analog for rats via quadrupedal unloading. J Appl Physiol (1985). 2018;125(1):175–82.

Article  CAS  PubMed  Google Scholar 

Mortreux M, Rosa-Caldwell ME. Approaching gravity as a Continuum using the rat partial weight-bearing model. Life (Basel). 2020;10(10).

Wagner EB, Granzella NP, Saito H, Newman DJ, Young LR, Bouxsein ML. Partial weight suspension: a novel murine model for investigating adaptation to reduced musculoskeletal loading. J Appl Physiol (1985). 2010;109(2):350–7.

Article  PubMed  Google Scholar 

Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, et al. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985). 2023;134(6):1438–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko FC, Mortreux M, Riveros D, Nagy JA, Rutkove SB, Bouxsein ML. Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. NPJ Microgravity. 2020;6:15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swift JM, Lima F, Macias BR, Allen MR, Greene ES, Shirazi-Fard Y, et al. Partial weight bearing does not prevent musculoskeletal losses associated with disuse. Med Sci Sports Exerc. 2013;45(11):2052–60.

Article  PubMed  Google Scholar 

Mortreux M, Riveros D, Semple C, Bouxsein ML, Rutkove SB. The partial weight-bearing rat model using a pelvic harness does not impact stress or hindlimb blood flow. Acta Astronaut. 2020;168:249–55.

Article  CAS  Google Scholar 

Klaus DM. Clinostats and bioreactors. Gravit Space Biol Bull. 2001;14(2):55–64.

CAS  PubMed  Google Scholar 

Borst AG, van Loon JJWA. Technology and Developments for the Random Positioning Machine. RPM Microgravity Sci Technol. 2008;21(4):287.

Article  Google Scholar 

Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, et al. Tissue Engineering under Microgravity conditions-Use of Stem cells and Specialized cells. Stem Cells Dev. 2018;27(12):787–804.

Article  PubMed  Google Scholar 

de Korte M, Keating A, Wang C. Culturing lymphocytes in simulated microgravity using a Rotary Cell Culture System. J Vis Exp. 2022(186).

Wuest SL, Richard S, Kopp S, Grimm D, Egli M. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed Res Int. 2015;2015:971474.

Article  PubMed  PubMed Central  Google Scholar 

Anil-Inevi M, Yaman S, Yildiz AA, Mese G, Yalcin-Ozuysal O, Tekin HC, et al. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci Rep. 2018;8(1):7239.

Article  PubMed  PubMed Central  Google Scholar 

Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8(10):1940–9.

Article 

留言 (0)

沒有登入
gif