Willey JS, Britten RA, Blaber E, Tahimic CGT, Chancellor J, Mortreux M, et al. The individual and combined effects of spaceflight radiation and microgravity on biologic systems and functional outcomes. J Environ Sci Health C Toxicol Carcinog. 2021;39(2):129–79.
CAS PubMed PubMed Central Google Scholar
Bezdan D, Grigorev K, Meydan C, Pelissier Vatter FA, Cioffi M, Rao V, et al. Cell-free DNA (cfDNA) and exosome profiling from a year-long human spaceflight reveals circulating biomarkers. iScience. 2020;23(12):101844.
Article CAS PubMed PubMed Central Google Scholar
Garrett-Bakelman FE, Darshi M, Green SJ, Gur RC, Lin L, Macias BR et al. The NASA Twins Study: a multidimensional analysis of a year-long human spaceflight. Science. 2019;364(6436).
Gertz ML, Chin CR, Tomoiaga D, MacKay M, Chang C, Butler D, et al. Multi-omic, Single-Cell, and biochemical profiles of astronauts Guide Pharmacological Strategies for returning to gravity. Cell Rep. 2020;33(10):108429.
Article CAS PubMed PubMed Central Google Scholar
da Silveira WA, Fazelinia H, Rosenthal SB, Laiakis EC, Kim MS, Meydan C, et al. Comprehensive multi-omics Analysis reveals mitochondrial stress as a Central Biological hub for spaceflight impact. Cell. 2020;183(5):1185–e20120.
Article PubMed PubMed Central Google Scholar
Gupta U, Baig S, Majid A, Bell SM. The neurology of space flight; how does space flight effect the human nervous system? Life Sci Space Res (Amst). 2023;36:105–15.
Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H. Interplay of space radiation and microgravity in DNA damage and DNA damage response. NPJ Microgravity. 2017;3:14.
Article PubMed PubMed Central Google Scholar
Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, et al. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res. 2014;34(10):778–86.
Article CAS PubMed PubMed Central Google Scholar
Krieger SS, Zwart SR, Mehta S, Wu H, Simpson RJ, Smith SM, et al. Alterations in saliva and plasma cytokine concentrations during long-duration spaceflight. Front Immunol. 2021;12:725748.
Article CAS PubMed PubMed Central Google Scholar
Moreno-Villanueva M, Feiveson AH, Krieger S, Kay Brinda A, von Scheven G, Bürkle A et al. Synergistic effects of Weightlessness, Isoproterenol, and Radiation on DNA damage response and cytokine production in Immune cells. Int J Mol Sci. 2018;19(11).
Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, et al. Immune system dysregulation occurs during short duration spaceflight on board the space shuttle. J Clin Immunol. 2013;33(2):456–65.
Article CAS PubMed Google Scholar
Paul AM, Cheng-Campbell M, Blaber EA, Anand S, Bhattacharya S, Zwart SR, et al. Beyond low-earth orbit: characterizing Immune and microRNA differentials following simulated deep spaceflight conditions in mice. iScience. 2020;23(12):101747.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y, Ni H, Li M, Sanzari JK, Diffenderfer ES, Lin L, et al. Effect of solar particle event radiation and hindlimb suspension on gastrointestinal tract bacterial translocation and immune activation. PLoS ONE. 2012;7(9):e44329.
Article CAS PubMed PubMed Central Google Scholar
Williams D, Kuipers A, Mukai C, Thirsk R. Acclimation during space flight: effects on human physiology. CMAJ. 2009;180(13):1317–23.
Article PubMed PubMed Central Google Scholar
Mulavara AP, Peters BT, Miller CA, Kofman IS, Reschke MF, Taylor LC, et al. Physiological and functional alterations after spaceflight and Bed Rest. Med Sci Sports Exerc. 2018;50(9):1961–80.
Article PubMed PubMed Central Google Scholar
Buckey JC, Thamer S, Lan M. Bone loss and kidney stone risk in weightlessness. Curr Opin Nephrol Hypertens. 2023;32(2):172–6.
Morey-Holton E, Globus RK, Kaplansky A, Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv Space Biol Med. 2005;10:7–40.
Sonnenfeld G. Animal models for the study of the effects of spaceflight on the immune system. Adv Space Res. 2003;32(8):1473–6.
Article CAS PubMed Google Scholar
Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985). 2002;92(4):1367–77.
Farley A, Gnyubkin V, Vanden-Bossche A, Laroche N, Neefs M, Baatout S, et al. Unloading-Induced cortical bone loss is exacerbated by low-dose irradiation during a simulated Deep Space Exploration Mission. Calcif Tissue Int. 2020;107(2):170–9.
Article CAS PubMed Google Scholar
Mortreux M, Nagy JA, Ko FC, Bouxsein ML, Rutkove SB. A novel partial gravity ground-based analog for rats via quadrupedal unloading. J Appl Physiol (1985). 2018;125(1):175–82.
Article CAS PubMed Google Scholar
Mortreux M, Rosa-Caldwell ME. Approaching gravity as a Continuum using the rat partial weight-bearing model. Life (Basel). 2020;10(10).
Wagner EB, Granzella NP, Saito H, Newman DJ, Young LR, Bouxsein ML. Partial weight suspension: a novel murine model for investigating adaptation to reduced musculoskeletal loading. J Appl Physiol (1985). 2010;109(2):350–7.
Rosa-Caldwell ME, Mortreux M, Wadhwa A, Kaiser UB, Sung DM, Bouxsein ML, et al. Influence of gonadectomy on muscle health in micro- and partial-gravity environments in rats. J Appl Physiol (1985). 2023;134(6):1438–49.
Article CAS PubMed PubMed Central Google Scholar
Ko FC, Mortreux M, Riveros D, Nagy JA, Rutkove SB, Bouxsein ML. Dose-dependent skeletal deficits due to varied reductions in mechanical loading in rats. NPJ Microgravity. 2020;6:15.
Article CAS PubMed PubMed Central Google Scholar
Swift JM, Lima F, Macias BR, Allen MR, Greene ES, Shirazi-Fard Y, et al. Partial weight bearing does not prevent musculoskeletal losses associated with disuse. Med Sci Sports Exerc. 2013;45(11):2052–60.
Mortreux M, Riveros D, Semple C, Bouxsein ML, Rutkove SB. The partial weight-bearing rat model using a pelvic harness does not impact stress or hindlimb blood flow. Acta Astronaut. 2020;168:249–55.
Klaus DM. Clinostats and bioreactors. Gravit Space Biol Bull. 2001;14(2):55–64.
Borst AG, van Loon JJWA. Technology and Developments for the Random Positioning Machine. RPM Microgravity Sci Technol. 2008;21(4):287.
Grimm D, Egli M, Krüger M, Riwaldt S, Corydon TJ, Kopp S, et al. Tissue Engineering under Microgravity conditions-Use of Stem cells and Specialized cells. Stem Cells Dev. 2018;27(12):787–804.
de Korte M, Keating A, Wang C. Culturing lymphocytes in simulated microgravity using a Rotary Cell Culture System. J Vis Exp. 2022(186).
Wuest SL, Richard S, Kopp S, Grimm D, Egli M. Simulated microgravity: critical review on the use of random positioning machines for mammalian cell culture. Biomed Res Int. 2015;2015:971474.
Article PubMed PubMed Central Google Scholar
Anil-Inevi M, Yaman S, Yildiz AA, Mese G, Yalcin-Ozuysal O, Tekin HC, et al. Biofabrication of in situ self assembled 3D cell cultures in a weightlessness environment generated using magnetic levitation. Sci Rep. 2018;8(1):7239.
Article PubMed PubMed Central Google Scholar
Haisler WL, Timm DM, Gage JA, Tseng H, Killian TC, Souza GR. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8(10):1940–9.
留言 (0)