Renoprotective effects of apocynin and/or umbelliferone against acrylamide-induced acute kidney injury in rats: role of the NLRP3 inflammasome and Nrf-2/HO-1 signaling pathways

Abd El-Ghafar OAM, Hassanein EHM, Sayed AM, Rashwan EK, Shalkami AS, Mahmoud AM (2021) Acetovanillone prevents cyclophosphamide-induced acute lung injury by modulating PI3K/Akt/mTOR and Nrf2 signaling in rats. Phytother Res 35(8):4499–4510. https://doi.org/10.1002/ptr.7153

Article  CAS  PubMed  Google Scholar 

Abdel-Wahab BA, Alkahtani SA, Alqahtani AA, Hassanein EHM (2022) Umbelliferone ameliorates ulcerative colitis induced by acetic acid via modulation of TLR4/NF-κB-p65/iNOS and SIRT1/PPARγ signaling pathways in rats. Environ Sci Pollut Res Int 29(25):37644–37659. https://doi.org/10.1007/s11356-021-18252-1

Article  CAS  PubMed  Google Scholar 

Alatshan A, Benkő S (2021) Nuclear receptors as multiple regulators of NLRP3 inflammasome function. Front Immunol 12:630569. https://doi.org/10.3389/fimmu.2021.630569

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asgharpour M, Tolouian AC, Bhaskar LV, Tolouian R, Massoudi N (2020) Herbal antioxidants and renal ischemic-reperfusion injury; an updated review. J Nephropharmacol 10(1)

Bakr AG, Hassanein EHM, Ali FEM, El-Shoura EAM (2022) Combined apocynin and carvedilol protect against cadmium-induced testicular damage via modulation of inflammatory response and redox-sensitive pathways. Life Sci 311(Pt A):121152. https://doi.org/10.1016/j.lfs.2022.121152

Article  CAS  PubMed  Google Scholar 

Bhargava R, Altmann CJ, Andres-Hernando A, Webb RG, Okamura K, Yang Y et al (2013) Acute lung injury and acute kidney injury are established by four hours in experimental sepsis and are improved with pre, but not post, sepsis administration of TNF-α antibodies. PLoS ONE 8(11):e79037

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bin-Jumah MN, Al-Huqail AA, Abdelnaeim N, Kamel M, Fouda MM, Abulmeaty MM et al (2021) Potential protective effects of Spirulina platensis on liver, kidney, and brain acrylamide toxicity in rats. Environ Sci Pollut Res 28:26653–26663

Article  CAS  Google Scholar 

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

Article  CAS  PubMed  Google Scholar 

Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371(1):58–66. https://doi.org/10.1056/NEJMra1214243

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cheng J, Chen X, Zhao S, Zhang Y (2015) Antioxidant-capacity-based models for the prediction of acrylamide reduction by flavonoids. Food Chem 168:90–99. https://doi.org/10.1016/j.foodchem.2014.07.008

Article  CAS  PubMed  Google Scholar 

Cotter MA, Cameron NE (2003) Effect of the NAD (P) H oxidase inhibitor, apocynin, on peripheral nerve perfusion and function in diabetic rats. Life Sci 73(14):1813–1824

Article  CAS  PubMed  Google Scholar 

Derelanko MJ (2017) The toxicologist’s pocket handbook. CRC Press

Google Scholar 

El-Sawalhi MM, Ahmed LA (2014) Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact 207:58–66. https://doi.org/10.1016/j.cbi.2013.11.008

Article  CAS  PubMed  Google Scholar 

Elhelaly AE, AlBasher G, Alfarraj S, Almeer R, Bahbah EI, Fouda MMA et al (2019) Protective effects of hesperidin and diosmin against acrylamide-induced liver, kidney, and brain oxidative damage in rats. Environ Sci Pollut Res Int 26(34):35151–35162. https://doi.org/10.1007/s11356-019-06660-3

Article  CAS  PubMed  Google Scholar 

Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

Article  CAS  PubMed  Google Scholar 

Erkekoglu P, Baydar T (2014) Acrylamide neurotoxicity. Nutr Neurosci 17(2):49–57

Article  CAS  PubMed  Google Scholar 

Exon J (2006) A review of the toxicology of acrylamide. J Toxicol Environ Health, Part B 9(5):397–412

Article  CAS  Google Scholar 

Fatani SH, ALrefai AA, Al-Amodi HS, Kamel HF, Al-Khatieb K, Bader H (2018) Assessment of tumor necrosis factor alpha polymorphism TNF-α− 238 (rs 361525) as a risk factor for development of acute kidney injury in critically ill patients. Mol Biol Rep 45:839–847

Germoush MO, Othman SI, Al-Qaraawi MA, Al-Harbi HM, Hussein OE, Al-Basher G et al (2018) Umbelliferone prevents oxidative stress, inflammation and hematological alterations, and modulates glutamate-nitric oxide-cGMP signaling in hyperammonemic rats. Biomed Pharmacother 102:392–402

Article  CAS  PubMed  Google Scholar 

Ghorbel I, Elwej A, Fendri N, Mnif H, Jamoussi K, Boudawara T et al (2017) Olive oil abrogates acrylamide induced nephrotoxicity by modulating biochemical and histological changes in rats. Ren Fail 39(1):236–245

Article  CAS  PubMed  Google Scholar 

Guo J, Cao X, Hu X, Li S, Wang J (2020) The anti-apoptotic, antioxidant and anti-inflammatory effects of curcumin on acrylamide-induced neurotoxicity in rats. BMC Pharmacol Toxicol 21(1):1–10

Article  CAS  Google Scholar 

Hassanein EH, Ali FE, Kozman MR, Abd El-Ghafar OA (2021a) Umbelliferone attenuates gentamicin-induced renal toxicity by suppression of TLR-4/NF-κB-p65/NLRP-3 and JAK1/STAT-3 signaling pathways. Environ Sci Pollut Res 28:11558–11571

Article  CAS  Google Scholar 

Hassanein EH, Sayed AM, El-Ghafar OAA, Omar ZM, Rashwan EK, Mohammedsaleh ZM et al (2023) Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways. Arch Pharmacal Res 46(4):339–359

Article  CAS  Google Scholar 

Hassanein EHM, Khader HF, Elmansy RA, Seleem HS, Elfiky M, Mohammedsaleh ZM et al (2021b) Umbelliferone alleviates hepatic ischemia/reperfusion-induced oxidative stress injury via targeting Keap-1/Nrf-2/ARE and TLR4/NF-κB-p65 signaling pathway. Environ Sci Pollut Res Int 28(47):67863–67879. https://doi.org/10.1007/s11356-021-15184-8

Article  CAS  PubMed  Google Scholar 

Hassanein EHM, Sayed AM, Hussein OE, Mahmoud AM (2020) Coumarins as modulators of the Keap1/Nrf2/ARE signaling pathway. Oxid Med Cell Longev 2020:1675957. https://doi.org/10.1155/2020/1675957

Article  CAS  PubMed  PubMed Central  Google Scholar 

He Y, Hara H, Núñez G (2016) Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 41(12):1012–1021

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong Y, Yan W, Chen S, Sun C-R, Zhang J-M (2010) The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 31(11):1421–1430

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ibaokurgil F, Aydin H, Yildirim S, Sengul E (2023) Melatonin alleviates oxidative stress, inflammation, apoptosis, and DNA damage in acrylamide–induced nephrotoxicity in rats. Asian Pac J Trop Biomed 13(3):121–130

Article  Google Scholar 

Jin HZ, Yang XJ, Zhao KL, Mei FC, Zhou Y, You YD et al (2019) Apocynin alleviates lung injury by suppressing NLRP3 inflammasome activation and NF-κB signaling in acute pancreatitis. Int Immunopharmacol 75:105821. https://doi.org/10.1016/j.intimp.2019.105821

Article  CAS  PubMed  Google Scholar 

Kandemir FM, Yıldırım S, Kucukler S, Caglayan C, Darendelioğlu E, Dortbudak MB (2020) Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: a multi-biomarker approach. Food Chem Toxicol 138:111190

Article  CAS  PubMed  Google Scholar 

Komoike Y, Matsuoka M (2019) In vitro and in vivo studies of oxidative stress responses against acrylamide toxicity in zebrafish. J Hazard Mater 365:430–439

Article  CAS  PubMed  Google Scholar 

Koszucka A, Nowak A, Nowak I, Motyl I (2020) Acrylamide in human diet, its metabolism, toxicity, inact

留言 (0)

沒有登入
gif