The association between cardiac T2*BOLD and quantitative flow ratio (QFR) in the diagnosis of stenotic coronary arteries in patients with multi-vessel coronary artery disease

Nichols M et al (2013) Cardiovascular disease in Europe: epidemiological update. Eur Heart J 34(39):3028–3034

Article  PubMed  Google Scholar 

Neumann F et al (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. EuroInterv J EuroPCR Collab Work Group Interv Cardiol Eur Soc Cardiol 14(14):1435–1534

Google Scholar 

Westra J et al (2018) Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II Study (Wire-free functional imaging II). Circ Cardiovasc Imaging 11(3):e007107

Article  PubMed  PubMed Central  Google Scholar 

Kirigaya H et al (2021) Diagnostic performance and limitation of quantitative flow ratio for functional assessment of intermediate coronary stenosis. J Cardiol 77(5):492–499

Article  PubMed  Google Scholar 

Tanigaki T et al (2019) QFR versus FFR derived from computed tomography for functional assessment of coronary artery stenosis. JACC Cardiovasc Interv 12(20):2050–2059

Article  PubMed  Google Scholar 

Song LXB, Tu S, Guan C, Jin Z, Yu B, Fu G, Zhou Y, Wang J’a, Chen Y, Pu J, Chen L, Qu X, Yang J, Liu X, Guo L, Shen C, Zhang Y, Zhang Q, Pan H, Zhang R, Liu J, Zhao Y, Wang Y, Dou K, Kirtane AJ, Wu Y, Wijns W, Yang W, Leon MB, Qiao S, Stone GW (2022) Angiographic quantitative flow ratio-guided coronary intervention: two-year outcomes of the FAVOR III China trial. J Am Coll Cardiol JACC J

Xu B et al (2021) Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet (Lond Engl) 398(10317):2149–2159

Article  Google Scholar 

Foley JR, Plein S, Greenwood JP (2017) Assessment of stable coronary artery disease by cardiovascular magnetic resonance imaging: current and emerging techniques. World J Cardiol 9(2):92–108

Article  PubMed  PubMed Central  Google Scholar 

Bazoukis G et al (2021) Contemporary role of cardiac magnetic resonance in the management of patients with suspected or known coronary artery disease. Medicina (Kaunas) 57(7):649

Article  PubMed  Google Scholar 

Everaars H et al (2020) Cardiac magnetic resonance for evaluating nonculprit lesions after myocardial infarction: comparison with fractional flow reserve. JACC Cardiovasc Imaging 13(3):715–728

Article  PubMed  Google Scholar 

Sharrack N et al (2022) How to do quantitative myocardial perfusion cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 23(3):315–318

Article  PubMed  Google Scholar 

Franks R, Plein S, Chiribiri A (2021) Clinical application of dynamic contrast enhanced perfusion imaging by cardiovascular magnetic resonance. Front Cardiovasc Med 8:768563

Article  PubMed  PubMed Central  Google Scholar 

Arnold JR, Jerosch-Herold M, Karamitsos TD, Francis JM, Bhamra-Ariza P, Sarwar R, Choudhury R, Selvanayagam JB, Neubauer S (2017) Detection of coronary stenosis at rest using BOLD-CMR. JACC Cardiovasc Imaging 10(5):600–601

Article  PubMed  Google Scholar 

van den Boomen M et al (2020) Blood oxygen level-dependent MRI of the myocardium with multiecho gradient-echo spin-echo imaging. Radiology 294(3):538–545

Article  PubMed  Google Scholar 

Yang HJ et al (2020) Heart rate-independent 3D myocardial blood oxygen level-dependent MRI at 3.0 T with simultaneous (13)N-Ammonia PET validation. Radiology 295(1):82–93

Article  PubMed  Google Scholar 

Chen B et al (2019) BOLD cardiac MRI for differentiating reversible and irreversible myocardial damage in ST segment elevation myocardial infarction. Eur Radiol 29(2):951–962

Article  PubMed  Google Scholar 

Triadyaksa P, Oudkerk M, Sijens PE (2020) Cardiac T2 * mapping: techniques and clinical applications. J Magn Reson Imaging 52(5):1340–1351

Article  PubMed  Google Scholar 

Buono A et al (2020) QFR predicts the incidence of long-term adverse events in patients with suspected CAD: feasibility and reproducibility of the method. J Clin Med 9(1):220

Article  CAS  PubMed  PubMed Central  Google Scholar 

Asano T et al (2019) Angiography-derived fractional flow reserve in the SYNTAX II trial: feasibility, diagnostic performance of quantitative flow ratio, and clinical prognostic value of functional SYNTAX score derived from quantitative flow ratio in patients with 3-vessel disease. JACC Cardiovasc Interv 12(3):259–270

Article  PubMed  Google Scholar 

Huelnhagen T et al (2017) Myocardial effective transverse relaxation time T2* correlates with left ventricular wall thickness: a 7.0 T MRI study. Magn Reson Med 77(6):2381–2389

Article  PubMed  Google Scholar 

Donato P et al (2012) Correspondence between left ventricular 17 myocardial segments and coronary anatomy obtained by multi-detector computed tomography: an ex vivo contribution. Surg Radiol Anat 34(9):805–810

Article  PubMed  Google Scholar 

Ortiz-Perez JT et al (2008) Correspondence between the 17-segment model and coronary arterial anatomy using contrast-enhanced cardiac magnetic resonance imaging. JACC Cardiovasc Imaging 1(3):282–293

Article  PubMed  Google Scholar 

Dai N et al (2022) Prognostic implications of quantitative flow ratio-derived physiological 2-dimensional residual disease patterns after stenting. JACC Cardiovasc Interv 15(16):1624–1634

Article  PubMed  Google Scholar 

Dettori R et al (2021) Quantitative flow ratio is associated with extent and severity of ischemia in non-culprit lesions of patients with myocardial infarction. J Clin Med 10(19):4535

Article  PubMed  PubMed Central  Google Scholar 

Milzi A et al (2021) Quantitative flow ratio (QFR) identifies functional relevance of non-culprit lesions in coronary angiographies of patients with acute myocardial infarction. Clin Res Cardiol 110(10):1659–1667

Article  PubMed  PubMed Central  Google Scholar 

Sejr-Hansen M et al (2020) Comparison of quantitative flow ratio and fractional flow reserve with myocardial perfusion scintigraphy and cardiovascular magnetic resonance as reference standard. A Dan-NICAD substudy. Int J Cardiovasc Imaging 36(3):395–402

Article  PubMed  Google Scholar 

Danad I et al (2017) Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 38(13):991–998

PubMed  Google Scholar 

Seraphim A et al (2022) Quantitative myocardial perfusion predicts outcomes in patients with prior surgical revascularization. J Am Coll Cardiol 79(12):1141–1151

Article  PubMed  PubMed Central  Google Scholar 

Brown LAE et al (2018) Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects. J Cardiovasc Magn Reson 20(1):48

Article  PubMed  PubMed Central  Google Scholar 

Arnold J et al (2017) Detection of Coronary Stenosis at Rest Using BOLD-CMR. JACC Cardiovasc Imaging 10(5):600–601

Article  PubMed  Google Scholar 

Friedrich M, Karamitsos T (2013) Oxygenation-sensitive cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:43

Google Scholar 

Walcher T et al (2012) Myocardial perfusion reserve assessed by T2-prepared steady-state free precession blood oxygen level-dependent magnetic resonance imaging in comparison to fractional flow reserve. Circ Cardiovasc Imaging 5(5):580–586

Article  PubMed  Google Scholar 

Jahnke C et al (2010) Navigator-gated 3D blood oxygen level-dependent CMR at 3.0-T for detection of stress-induced myocardial ischemic reactions. JACC Cardiovasc Imaging 3(4):375–84

留言 (0)

沒有登入
gif