The role of a digital twin in supporting criminal investigations - a case report about a possible abuse

Organization WH, et al. Responding to child maltreatment: A clinical handbook for health professionals. 2022.

Gilliland MG, et al. Guidelines for postmortem protocol for ocular investigation of sudden unexplained infant death and suspected physical child abuse. Am J Forensic Med Pathol. 2007;28:323–9.

Article  CAS  PubMed  Google Scholar 

Love JC, Derrick SM, Wiersema JM. Skeletal atlas of child abuse. Springer; 2011.

van Rijn RR, Robben SG, Fronczek J, Klein WM. In: Child abuse, a post-mortem forensic perspective. Springer; 2022. pp. 111–135.

McCarroll JE, Fisher JE, Cozza SJ, Whalen RJ. Child maltreatment fatality review: purposes, processes, outcomes, and challenges. Trauma Violence Abuse. 2021;22:1032–41.

Article  PubMed  Google Scholar 

Verhoff M, Gehl A, Kettner M, Kreutz K, Ramsthaler F. Digitale forensische fotodokumentation. Rechtsmedizin. 2009;5:369–81.

Article  Google Scholar 

Villa C, Jacobsen C. The application of photogrammetry for forensic 3d recording of crime scenes, evidence and people. Essentials of Autopsy Practice: Reviews, Updates and Advances. 2019, pp. 1–18.

Urbanová P, Hejna P, Jurda M. Testing photogrammetry-based techniques for three-dimensional surface documentation in forensic pathology. Foreign Policy Anal. 2015;250:77–86.

Google Scholar 

Leipner A, et al. Multi-camera system for 3d forensic documentation. Forensic Sci Int. 2016;261:123–8.

Article  PubMed  Google Scholar 

Villa C. Forensic 3d documentation of skin injuries. Int J Legal Med. 2017;131:751–9.

Article  PubMed  Google Scholar 

Alldieck T, Magnor M, Xu W, Theobalt C, Pons-Moll G. Video based reconstruction of 3d people models. 2018.

Massini F, et al. Comparison of superficial wound documentation using 2d forensic photography, 3d photogrammetry, botscan and vr with real-life examination. Forensic Sci Med Pathol. 2021;17:422–30.

Article  PubMed  PubMed Central  Google Scholar 

Hołowko E, Januszkiewicz K, Bolewicki P, Sitnik R, Michoński J. Application of multi-resolution 3d techniques in crime scene documentation with bloodstain pattern analysis. Forensic Sci Int. 2016;267:218–27.

Article  PubMed  Google Scholar 

Bornik A, et al. Integrated computer-aided forensic case analysis, presentation, and documentation based on multimodal 3d data. Forensic Sci Int. 2018;287:12–24.

Article  PubMed  Google Scholar 

Hoogeboom B, Alberink I, Goos M. Body height measurements in images. J Forensic Sci. 2009;54:1365–75.

Article  PubMed  Google Scholar 

Thali MJ, et al. Virtopsy–scientific documentation, reconstruction and animation in forensic: individual and real 3d data based geo-metric approach including optical body/object surface and radiological ct/mri scanning. J Forensic Sci. 2005;50:JFS2004290-15.

Article  Google Scholar 

Birngruber CG, Kreutz K, Ramsthaler F, Krähahn J, Verhoff MA. Superimposition technique for skull identification with afloat® software. Int J Legal Med. 2010;124:471–5.

Article  PubMed  Google Scholar 

Petershans S, Abel M, Mayerle U. Tätergrößenvermessung mit laserscanner. Die Kriminalpolizei. 2007:135–138.

Sieberth T, Ebert LC, Gentile S, Fliss B. Clinical forensic height measurements on injured people using a multi camera device for 3d documentation. Forensic Sci Med Pathol. 2020;16:586–94.

Article  PubMed  PubMed Central  Google Scholar 

Gädeke R, Gädeke R. Wiegen und messen. Diagnostische und therapeutische Techniken in der Pädiatrie. 1990:4–41.

Gädeke R. Diagnostische und therapeutische Techniken in der Pädiatrie. Springer-Verlag; 2013.

Janssen PA, et al. Standards for the measurement of birth weight, length and head circumference at term in neonates of european, chinese and south asian ancestry. Open Med. 2007;1:e74.

PubMed  PubMed Central  Google Scholar 

Bajanowski T, Verhoff MA. Obduktionen der leichen von neugeborenen, säuglingen und kleinkindern. Rechtsmedizin. 2008;2:91–8.

Article  Google Scholar 

Debertin A, Sperhake J. Untersuchung und dokumentation des nichtakzidentellen schädel-hirn-traumas im säuglings-und kleinkindalter. Rechtsmedizin. 2008;1:17–22.

Article  Google Scholar 

Artec 3D. Artec leo. 2023. https://www.artec3d.com/de/portable-3d-scanners/artec-leo. Zugriff am: 02 Apr 2023.

Freepik. Basic Straight Lineal and Special Lineal Icon Libraries. (2023). https://www.flaticon.com. Available at: https://www.flaticon.com/authors/freepik. Accessed 10 July 2024

Kumar J, Chen F, Doermann D. Sharpness estimation for document and scene images. 2012.

Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60:91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94.

Article  Google Scholar 

Alcantarilla PF, Bartoli A, Davison AJ, Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Kaze features. Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Computer Vision – ECCV 2012, 214–227. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012.

Vecchiola C, Nadiminti K, Buyya R. Image Filtering on .NET-based Desktop Grids. In: Proceedings of the 6th International Conference on Grid and Cooperative Computing, GCC 2007. 2007. p. 582–92. https://doi.org/10.1109/GCC.2007.78

Nister D, Stewenius H. Scalable recognition with a vocabulary tree. 2006.

Moons T, Van Gool L, Vergauwen M. 3d reconstruction from multiple images: Part 1 - principles. Found Trends Comput Graph Vis. 2009;4:287–404.

Article  Google Scholar 

AliceVision. Meshroom Manual. AliceVision. 2023. https://readthedocs.org/projects/meshroom-manual/downloads/pdf/latest/. Zugriff am: 01 Apr 2023.

Samet H. The quadtree and related hierarchical data structures. ACM Comput Surv (CSUR). 1984;16:187–260.

Article  Google Scholar 

Edelsbrunner H, Shah N. Incremental topological flipping works for regular triangulations. Algorithmica. 1996;15:223–41. https://doi.org/10.1007/BF01975867.

Article  Google Scholar 

Boykov Y, Kolmogorov V, Figueiredo M, Zerubia J, Jain AK, editors. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Figueiredo M, Zerubia J, Jain AK, editors. Energy Minimization Methods in Computer Vision and Pattern Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001. pp. 359–374.

Levy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps for automatic texture atlas generation. ACM Trans Graph. 2002;21:362–71.

Article  Google Scholar 

Burt PJ, Adelson EH. A multiresolution spline with application to image mosaics. ACM Trans Graph. 1983;2:217–36. https://doi.org/10.1145/245.247.

Article  Google Scholar 

Urschler M, et al. Intuitive presentation of clinical forensic data using anonymous and person-specific 3d reference manikins. Forensic Sci Int. 2014;241:155–66.

Koller S, Ebert LC, Martinez RM, Sieberth T. Using virtual reality for forensic examinations of injuries. Forensic Sci Int. 2019;295:30–5.

Article  PubMed  Google Scholar 

Michienzi R, Meier S, Ebert LC, Martinez RM, Sieberth T. Comparison of forensic photo-documentation to a photogrammetric solution using the multi-camera system “botscan”. Forensic Sci Int. 2018;288:46–52.

Bühler P, Schlaich P, Sinner D. Digitale Fotografie. Springer; 2017.

Hennemann M. Digitale Fotografie-der Meisterkurs. Pearson Deutschland GmbH; 2010.

Mikhail EM, Bethel JS, McGlone JC. Introduction to modern photogrammetry. John Wiley & Sons; 2001.

Maksymowicz K, Tunikowski W, Kościuk J. Crime event 3d reconstruction based on incomplete or fragmentary evidence material-case report. Forensic Sci Int. 2014;242:e6–11.

Sieberth T, et al. The forensic holodeck - recommendations after 8 years of experience for additional equipment to document vr applications. Forensic Science International. 2021;329:111092. https://www.sciencedirect.com/science/article/pii/S0379073821004126

留言 (0)

沒有登入
gif