The cerebellum modulates thirst

Zimmerman, C. A., Leib, D. E. & Knight, Z. A. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18, 459–469 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leib, D. E., Zimmerman, C. A. & Knight, Z. A. Thirst. Curr. Biol. 26, R1260–R1265 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Augustine, V. et al. Temporally and spatially distinct thirst satiation signals. Neuron 103, 242–249.e4 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Becker, C. A. et al. From thirst to satiety: the anterior mid-cingulate cortex and right posterior insula indicate dynamic changes in incentive value. Front Hum. Neurosci. 11, 234 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Saker, P. et al. Regional brain responses associated with drinking water during thirst and after its satiation. Proc. Natl Acad. Sci. USA 111, 5379–5384 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koziol, L. F. et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–177 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Sader, M., Waiter, G. D. & Williams, J. H. G. The cerebellum plays more than one role in the dysregulation of appetite: review of structural evidence from typical and eating disorder populations. Brain Behav. 13, e3286 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Baumann, O. & Mattingley, J. B. Cerebellum and emotion processing. Adv. Exp. Med Biol. 1378, 25–39 (2022).

Article  CAS  PubMed  Google Scholar 

Manto, M. et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. Cerebellum 11, 457–487 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Stroh, M. A. et al. NCB5OR deficiency in the cerebellum and midbrain leads to dehydration and alterations in thirst response, fasted feeding behavior, and voluntary exercise in mice. Cerebellum 17, 152–164 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Parsons, L. M. et al. Neuroimaging evidence implicating cerebellum in support of sensory/cognitive processes associated with thirst. Proc. Natl Acad. Sci. USA 97, 2332–2336 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duerrschmid, C. et al. Asprosin is a centrally acting orexigenic hormone. Nat. Med. 23, 1444–1453 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, B. et al. Asprosin promotes feeding through SK channel-dependent activation of AgRP neurons. Sci. Adv. 9, eabq6718 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, I. et al. Protein tyrosine phosphatase receptor ẟ serves as the orexigenic asprosin receptor. Cell Metab. 34, 549–563 e8 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, I. et al. Asprosin-neutralizing antibodies as a treatment for metabolic syndrome. eLife 10, e63784 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mishra, I. & Chopra, A. R. Overexpression and ELISA-based detection of asprosin in cultured cells and mice. STAR Protoc. 3, 101762 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shishikura, M. et al. Expression of receptor protein tyrosine phosphatase ẟ, PTPẟ, in mouse central nervous system. Brain Res. 1642, 244–254 (2016).

Article  CAS  PubMed  Google Scholar 

Uhl, G. R. & Martinez, M. J. PTPRD: neurobiology, genetics, and initial pharmacology of a pleiotropic contributor to brain phenotypes. Ann. NY Acad. Sci. 1451, 112–129 (2019).

Takahashi, H. & Craig, A. M. Protein tyrosine phosphatases PTPẟ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36, 522–534 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, H. et al. Cerebellar modules operate at different frequencies. eLife 3, e02536 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Hashimoto, M. et al. Anatomical evidence for a direct projection from Purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front. Neural Circuits 12, 6 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pisano, T. J. et al. Homologous organization of cerebellar pathways to sensory, motor, and associative forebrain. Cell Rep. 36, 109721 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Britt, J. P., McDevitt, R. A. & Bonci, A. Use of channelrhodopsin for activation of CNS neurons. Curr. Protoc. Neurosci. 10.1002/0471142301.ns0216s58.

Boughter, J. D. Jr. et al. Genetic control of a central pattern generator: rhythmic oromotor movement in mice is controlled by a major locus near Atp1a2. PLoS ONE 7, e38169 (2012).

Uchizono, K. Excitation and inhibition in the nervous system. No Shinkei Geka 6, 7–16 (1978).

CAS  PubMed  Google Scholar 

Medina, J. F. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr. Opin. Neurobiol. 21, 616–622 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sasegbon, A. & Hamdy, S. The role of the cerebellum in swallowing. Dysphagia 38, 497–509 (2023).

Article  PubMed  Google Scholar 

Darmohray, D. M. et al. Spatial and temporal locomotor learning in mouse cerebellum. Neuron 102, 217–231.e4 (2019).

Article  CAS  PubMed  Google Scholar 

Sathyanesan, A., Kratimenos, P. & Gallo, V. Disruption of neonatal Purkinje cell function underlies injury-related learning deficits. Proc. Natl Acad. Sci. USA 118, e2017876118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vinueza Veloz, M. F. et al. Cerebellar control of gait and interlimb coordination. Brain Struct. Funct. 220, 3513–3536 (2015).

Article  PubMed  Google Scholar 

Basile, A. S. & Dunwiddie, T. V. Norepinephrine elicits both excitatory and inhibitory responses from Purkinje cells in the in vitro rat cerebellar slice. Brain Res. 296, 15–25 (1984).

Article  CAS  PubMed  Google Scholar 

Badura, A. et al. Climbing fiber input shapes reciprocity of Purkinje cell firing. Neuron 78, 700–713 (2013).

留言 (0)

沒有登入
gif