Male infertility is associated with differential DNA methylation signatures of the imprinted gene GNAS and the non-imprinted gene CEP41

Mazzilli R, Rucci C, Vaiarelli A, Cimadomo D, Ubaldi FM, Foresta C, et al. Male factor infertility and assisted reproductive technologies: indications, minimum access criteria and outcomes. J Endocrinol Invest. 2023;46(6):1079–85. https://doi.org/10.1007/s40618-022-02000-4

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, et al. Male infertility. Lancet. 2021;397(10271):319–33. https://doi.org/10.1016/s0140-6736(20)32667-2

Article  PubMed  Google Scholar 

Eisenberg ML, Esteves SC, Lamb DJ, Hotaling JM, Giwercman A, Hwang K, et al. Male infertility. Nature Reviews Disease Primers. 2023;9(1):1. https://doi.org/10.1038/s41572-023-00459-w

Article  Google Scholar 

Pathak UI, Gabrielsen JS, Lipshultz LI. Cutting-edge evaluation of male infertility. Urol Clin North Am. 2020;47(2):129–38. https://doi.org/10.1016/j.ucl.2019.12.001

Article  PubMed  Google Scholar 

Calogero AE, Cannarella R, Agarwal A, Hamoda TAA, Rambhatla A, Saleh R, et al. The renaissance of male infertility management in the golden age of andrology. World J Mens Health. 2023;41(2):237–54. https://doi.org/10.5534/wjmh.220213

Article  PubMed  PubMed Central  Google Scholar 

Diaz P, Dullea A, Chu KY, Zizzo J, Loloi J, Reddy R, et al. Future of male infertility evaluation and treatment: brief review of emerging technology. Urology. 2022;169:9–16. https://doi.org/10.1016/j.urology.2022.06.036

Article  PubMed  Google Scholar 

Baldini D, Ferri D, Baldini GM, Lot D, Catino A, Vizziello D, et al. Sperm selection for ICSI: do we have a winner? Cells. 2021;10(12).https://doi.org/10.3390/cells10123566

Colaco S, Sakkas D. Paternal factors contributing to embryo quality. J Assist Reprod Genet. 2018;35(11):1953–68. https://doi.org/10.1007/s10815-018-1304-4

Article  PubMed  PubMed Central  Google Scholar 

Cannarella R, Crafa A, Barbagallo F, Lundy SD, La Vignera S, Condorelli RA, et al. H19 sperm methylation in male infertility: a systematic review and meta-analysis. Int J Mol Sci. 2023;24(8). https://doi.org/10.3390/ijms24087224

Trost N, Mbengue N, Kaessmann H. The molecular evolution of mammalian spermatogenesis. Cells Dev. 2023;175:203865. https://doi.org/10.1016/j.cdev.2023.203865

Article  CAS  PubMed  Google Scholar 

Ozkocer SE, Konac E. The current perspective on genetic and epigenetic factors in sperm maturation in the epididymis. Andrologia. 2021;53(3):e13989. https://doi.org/10.1111/and.13989

Article  CAS  PubMed  Google Scholar 

Pollard CA, Jenkins TG. Epigenetic mechanisms within the sperm epigenome and their diagnostic potential. Best Pract Res Clin Endocrinol Metab. 2020;34(6):101481. https://doi.org/10.1016/j.beem.2020.101481

Article  CAS  PubMed  Google Scholar 

Bracke A, Peeters K, Punjabi U, Hoogewijs D, Dewilde S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36(3):327–39. https://doi.org/10.1016/j.rbmo.2017.12.005

Article  CAS  PubMed  Google Scholar 

Garrido N, Boitrelle F, Saleh R, Durairajanayagam D, Colpi G, Agarwal A. Sperm epigenetics landscape: correlation with embryo quality, reproductive outcomes and offspring’s health. Panminerva Med. 2023;65(2):166–78. https://doi.org/10.23736/s0031-0808.23.04871-1

Article  PubMed  Google Scholar 

Zhou S, Feng S, Qin W, Wang X, Tang Y, Yuan S. Epigenetic regulation of spermatogonial stem cell homeostasis: from DNA methylation to histone modification. Stem Cell Rev Rep. 2021;17(2):562–80. https://doi.org/10.1007/s12015-020-10044-3

Article  CAS  PubMed  Google Scholar 

Kitamura A, Miyauchi N, Hamada H, Hiura H, Chiba H, Okae, et al. Epigenetic alterations in sperm associated with male infertility. Congenit Anom (Kyoto). 2015;55(3):133–44. https://doi.org/10.1111/cga.12113

Article  PubMed  Google Scholar 

Wang Y, Hylemon PB, Zhou H. Long noncoding RNA H19: a key player in liver diseases. Hepatology. 2021;74(3):1652–9. https://doi.org/10.1002/hep.31765

Article  CAS  PubMed  Google Scholar 

Xiang M, Ma Y, Lei H, Wen L, Chen S, Wang X. In vitro fertilization placenta overgrowth in mice is associated with downregulation of the paternal imprinting gene H19. Mol Reprod Dev. 2019;86(12):1940–50. https://doi.org/10.1002/mrd.23279

Article  CAS  PubMed  Google Scholar 

Wang B, Suen CW, Ma H, Wang Y, Kong L, Qin D, et al. The roles of H19 in regulating inflammation and aging. Front Immunol. 2020;11:579687. https://doi.org/10.3389/fimmu.2020.579687

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu AH, Guo LY, Lu S, Chen XL, Wang AA, Wang XY, et al. Aberrant methylation of IGF2-AS promoter in early pregnancy loss. Taiwan J Obstet Gynecol. 2020;59(1):109–14. https://doi.org/10.1016/j.tjog.2019.11.017

Article  PubMed  Google Scholar 

Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695–703. https://doi.org/10.1111/andr.12379

Article  CAS  PubMed  Google Scholar 

Kerjean A, Dupont JM, Vasseur C, Le Tessier D, Cuisset L, Pàldi A, et al. Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis. Hum Mol Genet. 2000;9(14):2183–7. https://doi.org/10.1093/hmg/9.14.2183

Article  CAS  PubMed  Google Scholar 

Nakabayashi K, Bentley L, Hitchins MP, Mitsuya K, Meguro M, Minagawa S, et al. Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32. Hum Mol Genet. 2002;11(15):1743–56.https://doi.org/10.1093/hmg/11.15.1743

Article  CAS  PubMed  Google Scholar 

Li T, Vu TH, Lee KO, Yang Y, Nguyen CV, Bui HQ, et al. An imprinted PEG1/MEST antisense expressed predominantly in human testis and in mature spermatozoa. J Biol Chem. 2002;277(16):13518–27. https://doi.org/10.1074/jbc.M200458200

Article  CAS  PubMed  Google Scholar 

Schneider E, Mayer S, El Hajj N, Jensen L, Kuss A, Zischler H, et al. Methylation and expression analyses of the 7q autism susceptibility locus genes MEST, COPG2, and TSGA14 in human and anthropoid primate cortices. Cytogenet Genome Res. 2012;136(4):278–87. https://doi.org/10.1159/000337298

Article  CAS  PubMed  Google Scholar 

Yamada T, Kayashima T, Yamasaki K, Ohta T, Yoshiura K, Matsumoto N, et al. The gene TSGA14, adjacent to the imprinted gene MEST, escapes genomic imprinting. Gene. 2002;288(1–2):57–63. https://doi.org/10.1016/s0378-1119(02)00428-6

Article  CAS  PubMed  Google Scholar 

Lee JE, Silhavy JL, Zaki MS, Schroth J, Bielas SL, Marsh SE, et al. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nature genetics [Internet]. 2012;44(2):193–9. https://doi.org/10.1038/ng.1078

Article  CAS  PubMed  Google Scholar 

Cannarella R, Crafa A, Condorelli RA, Mongioì LM, La Vignera S, Calogero AE. Relevance of sperm imprinted gene methylation on assisted reproductive technique outcomes and pregnancy loss: a systematic review. Syst Biol Reprod Med. 2021;67(4):251–9. https://doi.org/10.1080/19396368.2021.1909667

Article  CAS  PubMed  Google Scholar 

Li T, Vu TH, Zeng ZL, Nguyen BT, Hayward BE, Bonthron DT, et al. Tissue-specific expression of antisense and sense transcripts at the imprinted Gnas locus. Genomics. 2000;69(3):295–304. https://doi.org/10.1006/geno.2000.6337

Article  CAS  PubMed  Google Scholar 

Turan S, Bastepe M. GNAS spectrum of disorders. Curr Osteoporos Rep. 2015;13(3):146–58. https://doi.org/10.1007/s11914-015-0268-x

留言 (0)

沒有登入
gif