The DNA double-strand break repair proteins γH2AX, RAD51, BRCA1, RPA70, KU80, and XRCC4 exhibit follicle-specific expression differences in the postnatal mouse ovaries from early to older ages

Park CJ, et al. Lifetime changes of the oocyte pool: Contributing factors with a focus on ovulatory inflammation. Clin Exp Reprod Med. 2022;49(1):16–25.

Article  PubMed  PubMed Central  Google Scholar 

Hansen KR, et al. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708.

Article  PubMed  Google Scholar 

Younis JS. Ovarian aging: latest thoughts on assessment and management. Curr Opin Obstet Gynecol. 2011;23(6):427–34.

Article  PubMed  Google Scholar 

Wasielak-Politowska M, Kordowitzki P. Chromosome segregation in the oocyte: what goes wrong during aging. Int J Mol Sci. 2022;23(5):2880.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leem J, Lee C, Choi DY, Oh JS. Distinct characteristics of the DNA damage response in mammalian oocytes. Exp Mol Med. 2024;56(2):319–28.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Milholland B, et al. Differences between germline and somatic mutation rates in humans and mice. Nat Commun. 2017;8:15183.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panier S, Wang S, Schumacher B. Genome instability and DNA repair in somatic and reproductive aging. Annu Rev Pathol. 2024;19:261–90.

Article  CAS  PubMed  Google Scholar 

Kerr JB, et al. The primordial follicle reserve is not renewed after chemical or gamma-irradiation mediated depletion. Reproduction. 2012;143(4):469–76.

Article  CAS  PubMed  Google Scholar 

Jazayeri A, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol. 2006;8(1):37–45.

Article  CAS  PubMed  Google Scholar 

Garcia-Rodriguez A, et al. DNA damage and repair in human reproductive cells. Int J Mol Sci. 2018;20(1):31.

Talibova G, Bilmez Y, Ozturk S. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair (Amst). 2022;118: 103386.

Article  CAS  PubMed  Google Scholar 

Sung P, Klein H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol. 2006;7(10):739–50.

Article  CAS  PubMed  Google Scholar 

Sellou H, et al. The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage. Mol Biol Cell. 2016;27(24):3791–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293(27):10502–11.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsumoto Y, Asa A, Modak C, Shimada M. DNA-dependent protein kinase catalytic subunit: the sensor for DNA double-strand breaks structurally and functionally related to ataxia telangiectasia mutated. Genes (Basel). 2021;12(8):1143.

Article  CAS  PubMed  Google Scholar 

Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res. 2013;750(1–2):5–14.

Article  CAS  PubMed  Google Scholar 

Zhang D, et al. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J Assist Reprod Genet. 2015;32(7):1069–78.

Article  PubMed  PubMed Central  Google Scholar 

Horta F, et al. Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice. J Assist Reprod Genet. 2021;38(1):55–69.

Article  PubMed  Google Scholar 

Turan V, Oktay K. BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Hum Reprod Update. 2020;26(1):43–57.

Article  CAS  PubMed  Google Scholar 

Stark JM, et al. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol. 2004;24(21):9305–16.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stolz A, et al. The CHK2-BRCA1 tumour suppressor pathway ensures chromosomal stability in human somatic cells. Nat Cell Biol. 2010;12(5):492–9.

Article  CAS  PubMed  Google Scholar 

Oktay K, et al. BRCA mutations, DNA repair deficiency, and ovarian aging. Biol Reprod. 2015;93(3):67.

Article  PubMed  PubMed Central  Google Scholar 

Govindaraj V, KeralapuraBasavaraju R, Rao AJ. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online. 2015;30(3):303–10.

Article  CAS  PubMed  Google Scholar 

Govindaraj V, Krishnagiri H, Chauhan MS, Rao AJ. BRCA-1 gene expression and comparative proteomic profile of primordial follicles from young and adult buffalo (Bubalus bubalis) ovaries. Anim Biotechnol. 2017;28(2):94–103.

Article  CAS  PubMed  Google Scholar 

Bhattacharya S, et al. RAD51 interconnects between DNA replication, DNA repair and immunity. Nucleic Acids Res. 2017;45(8):4590–605.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Petermann E, et al. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell. 2010;37(4):492–502.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bilotto S, Boni R, Russo GL, Lioi MB. Meiosis progression and donor age affect expression profile of DNA repair genes in bovine oocytes. Zygote. 2015;23(1):11–8.

Article  CAS  PubMed  Google Scholar 

Titus S, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5(172):172ra21.

Article  PubMed  PubMed Central  Google Scholar 

Govindaraj V, et al. Age-related changes in gene expression patterns of immature and aged rat primordial follicles. Syst Biol Reprod Med. 2017;63(1):37–48.

Article  CAS  PubMed  Google Scholar 

Kujjo LL, et al. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLoS ONE. 2010;5(2): e9204.

Article  PubMed  PubMed Central  Google Scholar 

Zou Y, Liu Y, Wu X, Shell SM. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol. 2006;208(2):267–73.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Deng SK, Chen H, Symington LS. Replication protein A prevents promiscuous annealing between short sequence homologies: Implications for genome integrity. BioEssays. 2015;37

留言 (0)

沒有登入
gif