Design of beam splitters with different beam splitting ratios by using double defect layered 1D ternary photonic band gap structures

C.C. Chen, H.D.. Chien, P.G. Luan, Photonic crystal beam splitters. Appl. Opt. 43, 6187–6190 (2004)

Article  ADS  Google Scholar 

Z. Yang, K. Chen, C. Wang et al., A photonic crystal beam splitter used for light path multiplexing: synergy of TIR and PBG light guiding. Opt. Quantum Electron. 52, 84 (2020)

Article  Google Scholar 

A. Fedaouche, H.A. Badaoui, M. Abri, An ultra-compact 1 × 5 and 1 × 10 beam-splitters in photonic crystal slab. Optik 157, 1300–1305 (2018)

Article  Google Scholar 

H. Ke, P. Shi, P. Li, W. Shi, Photonic crystal broadband y-shaped 1 × 2 beam splitter inversely designed by genetic algorithm. Opt. Eng. 62, 065106 (2023). https://doi.org/10.1117/1.OE.62.6.065106

Article  ADS  Google Scholar 

W. Yang, Y.F. Chau, A compact 90° bent equal output ports of photonic crystal beam splitter with complete band gap based on defect resonance interface. Prog. Electromagn. Res. M 27, 231–240 (2012)

Article  Google Scholar 

M. Bayindir, B. Temelkuran, E. Ozbay, Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77, 3902–3904 (2000)

Article  ADS  Google Scholar 

A. Banerjee, Design of beam splitters by using 1D defect ternary photonic band gap structures, in Proceedings of Fifth International Conference on Inventive Material Science Applications. Advances in Sustainability Science and Technology. ed. by V. Bindhu, J.M.R.S. Tavares, J.I.Z. Chen (Springer, Singapore, 2023). https://doi.org/10.1007/978-981-19-4304-1_3

Chapter  Google Scholar 

A. Banerjee, Design of beam splitters by using defect layered 1D quaternary photonic crystals. J. Opt. 53, 435–437 (2024). https://doi.org/10.1007/s12596-023-01124-x

Article  Google Scholar 

A. Banerjee, Testing multilayer structures for optical filtering in temperature unstable environments. Optik 126, 3728–3730 (2015)

Article  ADS  Google Scholar 

A.K. Singh, A. Kulshreshtha, A. Banerjee, Design of Corrosion sensors by using 1D quaternary photonic crystal with defect layer. J. Opt. 52, 1919–1924 (2023). https://doi.org/10.1007/s12596-022-01085-7

Article  Google Scholar 

A.K. Singh, A. Kulshreshtha, A. Banerjee, Transmission performance of 1D quaternary photonic crystal with multiple defects. J. Opt. 52, 2380–2381 (2023). https://doi.org/10.1007/s12596-023-01108-x

Article  Google Scholar 

A. Banerjee, Design of an optical buffer by using 1D quaternary photonic crystal. J. Opt. 53, 817–820 (2024). https://doi.org/10.1007/s12596-023-01175-0

Article  ADS  Google Scholar 

A. Banerjee, Wavelength demultiplexing by using 1D quaternary photonic crystal. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01273-z

Article  Google Scholar 

A. Banerjee, Electrically controlled transmission through a defect layered 1D quaternary photonic crystal. J. Opt. (2023). https://doi.org/10.1007/s12596-023-01276-w

Article  Google Scholar 

M.M. Abadla, N.A. Tabaza, W. Tabaza, N.R. Ramanujam, K.S.J. Wilson, D. Vigneswaran, S.A. Taya, Properties of ternary photonic crystal consisting of dielectric/plasma/dielectric as a lattice period. Optik 185, 784–793 (2019)

Article  Google Scholar 

K.M. Abohassan, H.S. Ashour, M.M. Abadla, One-dimensional ZnSe/ZnS/BK7 ternary planar photonic crystals as wide angle infrared reflectors. Res. Phys. 22, 103882 (2021)

Google Scholar 

R. Talebzadeh, M. Bavaghar, Tunable defect mode in one-dimensional ternary nanophotonic crystal with mirror symmetry. J. Optoelectron. Nanostruct. 2, 83–92 (2017)

Google Scholar 

A. Banerjee, Design of a multiwavelength optical buffer for optical networks by using a 1D defect ternary photonic multilayer structures. J. Opt. 52, 1730–1740 (2023). https://doi.org/10.1007/s12596-022-00992-z

Article  Google Scholar 

A. Banerjee, Enhancement in sensitivity of blood glucose sensor by using 1D defect ternary photonic band gap structures. J. Opt. 48, 262–265 (2019)

Article  Google Scholar 

A. Banerjee, Design of enhanced sensitivity gas sensors by using 1D defect ternary photonic band gap structures. Indian J. Phys. 94, 535–539 (2020)

Article  ADS  Google Scholar 

A. Banerjee, S. Rizvi, Suitability of 1D photonic band gap structures for electrical tuning of transmission spectrum in optical filters, in 2018 International Conference on Computational and Characterization Techniques in Engineering & Sciences (CCTES), Lucknow, India, pp. 272–275 (2018). https://doi.org/10.1109/CCTES.2018.8674134

A. Banerjee, U. Malaviya, Design of a tunable ultraviolet filter using metallodielectric photonic crystal, in 2007 IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, pp. 1–4 (2007). https://doi.org/10.1109/AEMC.2007.4638034

留言 (0)

沒有登入
gif