The power of trans-sodium crocetinate: exploring its renoprotective effects in a rat model of colistin-induced nephrotoxicity

Ajami M, Eghtesadi S, Pazoki-Toroudi H, Habibey R, Ebrahimi SA (2010) Effect of crocus sativus on gentamicin induced nephrotoxicity. Biol Res 43(1):83–90

Article  PubMed  Google Scholar 

Arslan BY, Arslan F, Erkalp K, Alagol A, Sevdi MS, Yildiz G, Altinay S (2016) Luteolin ameliorates colistin-induced nephrotoxicity in the rat models. Ren Fail 38(10):1735–1740. https://doi.org/10.1080/0886022X.2016.1229995

Article  CAS  PubMed  Google Scholar 

Aslan T, Guler EM, Cakir A, Dundar T, Gulgec AS, Huseyinbas O, Durdu B (2021) Dexpanthenol and ascorbic acid ameliorate colistin-induced nephrotoxicity in rats. Eur Rev Med Pharmacol Sci 25(2):1016–1023. https://doi.org/10.26355/eurrev_202101_24671

Article  CAS  PubMed  Google Scholar 

Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Sadeghnia HR, Khazaei M (2017) The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 96:173–184. https://doi.org/10.1016/j.cyto.2017.04.015

Article  CAS  PubMed  Google Scholar 

Bedrood Z, Masjedi E, Vahdati Hassani F, Ghasemzadeh Rahbardar M, Hosseinzadeh H, Abnous K, Mehri S (2023) Evaluation the effect of crocin on bisphenol A-induced memory impairment in rats: role of ERK, CaMKII, and CREB proteins in hippocampus. J North Khorasan Univ Med Sci 14(4):63–74

Google Scholar 

Boskabady MH, Rahbardar MG, Jafari Z (2011) The effect of safranal on histamine (H(1)) receptors of guinea pig tracheal chains. Fitoterapia 82(2):162–167. https://doi.org/10.1016/j.fitote.2010.08.017

Article  CAS  PubMed  Google Scholar 

Boskabady MH, Ghasemzadeh Rahbardar M, Nemati H, Esmaeilzadeh M (2010) Inhibitory effect of Crocus sativus (saffron) on histamine (H1) receptors of guinea pig tracheal chains. Die Pharmazie 65(4):300–305. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20432629

D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

Article  PubMed  Google Scholar 

Dai C, Tang S, Deng S, Zhang S, Zhou Y, Velkov T, Xiao X (2015) Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob Agents Chemother 59(1):579–585. https://doi.org/10.1128/aac.03925-14

Article  PubMed  Google Scholar 

Deavall DG, Martin EA, Horner JM, Roberts R (2012) Drug-induced oxidative stress and toxicity. J Toxicol 2012:645460. https://doi.org/10.1155/2012/645460

Article  CAS  PubMed  PubMed Central  Google Scholar 

Diao SL, Sun JW, Ma BX, Li XM, Wang D (2018) Influence of crocetin on high-cholesterol diet induced atherosclerosis in rats via anti-oxidant activity together with inhibition of inflammatory response and p38 MAPK signaling pathway. Saudi J Biol Sci 25(3):493–499. https://doi.org/10.1016/j.sjbs.2016.11.005

Article  CAS  PubMed  Google Scholar 

Dumludag B, Derici MK, Sutcuoglu O, Ogut B, Pasaoglu OT, Gonul II, Derici U (2022) Role of silymarin (Silybum marianum) in the prevention of colistin-induced acute nephrotoxicity in rats. Drug Chem Toxicol 45(2):568–575. https://doi.org/10.1080/01480545.2020.1733003

Article  CAS  PubMed  Google Scholar 

Edrees NE, Galal AAA, Abdel Monaem AR, Beheiry RR, Metwally MMM (2018) Curcumin alleviates colistin-induced nephrotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chem Biol Interact 294:56–64. https://doi.org/10.1016/j.cbi.2018.08.012

Article  CAS  PubMed  Google Scholar 

El-Hady WM, Galal AAA (2018) Neurotoxic outcomes of subchronic manganese chloride exposure via contaminated water in adult male rats and the potential benefits of ebselen. Biol Trace Elem Res 186(1):208–217. https://doi.org/10.1007/s12011-018-1291-4

Article  CAS  PubMed  Google Scholar 

Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. https://doi.org/10.1080/01926230701320337

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gai Z, Samodelov SL, Kullak-Ublick GA, Visentin M (2019) Molecular mechanisms of colistin-induced nephrotoxicity. Molecules 24(3):653. https://doi.org/10.3390/molecules24030653

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gergin OO, Pehlivan SS, Ulger M, Mat OC, Bayram A, Gonen ZB, Yay AH (2022) Efficacy of stem cell-based therapies for colistin-induced nephrotoxicity. Environ Toxicol Pharmacol 94:103933. https://doi.org/10.1016/j.etap.2022.103933

Article  CAS  PubMed  Google Scholar 

Ghasemzadeh Rahbardar M, Hosseinzadeh H (2023) A review of how the saffron (Crocus sativus) petal and its main constituents interact with the Nrf2 and NF-kappaB signaling pathways. Naunyn-Schmiedeberg’s Arch Pharmacol 396(9):1879–1909. https://doi.org/10.1007/s00210-023-02487-5

Article  CAS  Google Scholar 

Ghasemzadeh Rahbardar M, Razavi BM, Naraki K, Hosseinzadeh H (2023) Therapeutic effects of minocycline on oleic acid-induced acute respiratory distress syndrome (ARDS) in rats. Naunyn Schmiedebergs Arch Pharmacol 396(11):3233–3242. https://doi.org/10.1007/s00210-023-02532-3

Article  CAS  PubMed  Google Scholar 

Ghlissi Z, Hakim A, Mnif H, Ayadi FM, Zeghal K, Rebai T, Sahnoun Z (2013) Evaluation of colistin nephrotoxicity administered at different doses in the rat model. Ren Fail 35(8):1130–1135. https://doi.org/10.3109/0886022X.2013.815091

Article  CAS  PubMed  Google Scholar 

Ghlissi Z, Hakim A, Sila A, Mnif H, Zeghal K, Rebai T, Sahnoun Z (2014) Evaluation of efficacy of natural astaxanthin and vitamin E in prevention of colistin-induced nephrotoxicity in the rat model. Environ Toxicol Pharmacol 37(3):960–966. https://doi.org/10.1016/j.etap.2014.03.004

Article  CAS  PubMed  Google Scholar 

Ghlissi Z, Hakim A, Mnif H, Zeghal K, Rebai T, Boudawara T, Sahnoun Z (2018) Combined use of vitamins E and C improve nephrotoxicity induced by colistin in rats. Saudi J Kidney Dis Transpl 29(3):545–553. https://doi.org/10.4103/1319-2442.235168

Article  PubMed  Google Scholar 

Ghobakhlou F, Eisvand F, Razavi BM, Ghasemzadeh Rahbardar M, Hosseinzadeh H (2023) Evaluating the effect of alpha-mangostin on neural toxicity induced by acrylamide in rats. Environ Sci Pollut Res Int 30(42):95789–95800. https://doi.org/10.1007/s11356-023-29162-9

Article  CAS  PubMed  Google Scholar 

Hanedan B, Ozkaraca M, Kirbas A, Kandemir FM, Aktas MS, Kilic K, Bilgili A (2018) Investigation of the effects of hesperidin and chrysin on renal injury induced by colistin in rats. Biomed Pharmacother 108:1607–1616. https://doi.org/10.1016/j.biopha.2018.10.001

Article  CAS  PubMed  Google Scholar 

Hosseini A, Razavi BM, Hosseinzadeh H (2018) Pharmacokinetic properties of saffron and its active components. Eur J Drug Metab Pharmacokin 43(4):383–390. https://doi.org/10.1007/s13318-017-0449-3

Article  CAS  Google Scholar 

Hosseinzadeh H, Nassiri-Asl M (2013) Avicenna’s (Ibn Sina) the Canon of Medicine and saffron (Crocus sativus): a review. Phytother Res 27(4):475–483. https://doi.org/10.1002/ptr.4784

Article  PubMed  Google Scholar 

Javan AO, Salamzadeh J, Shokouhi S, Sahraei Z (2017) Evaluation of renal toxicity of colistin therapy with neutrophil gelatinase-associated lipocalin: a biomarker of renal tubular damage. IJKD 11(6):447–455

Google Scholar 

Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

Article  CAS  PubMed  PubMed Central  Google Scholar 

Karimi M, Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H (2023) Amifostine inhibits acrylamide-induced hepatotoxicity by inhibiting oxidative stress and apoptosis. Iran J Basic Med Sci 26(6):662–668. https://doi.org/10.22038/IJBMS.2023.67815.14837

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif