Study of the impact of the vascular systemic risk factors on peripapillary vascular density by optical coherence tomography angiography

Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: A review. JAMA 311:1901–11 (American Medical Association)

Article  PubMed  PubMed Central  Google Scholar 

Shin JD, Wolf AT, Harris A, VerticchioVercellin A, Siesky B, Rowe LW et al (2022) Vascular biomarkers from optical coherence tomography angiography and glaucoma: where do we stand in 2021? Acta Ophthalmol 100:e377-85 (John Wiley and Sons Inc)

Article  PubMed  Google Scholar 

Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller PJ, Parrish RK 2nd, Wilson MR, Gordon MO (2002) The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):701–713; discussion 829–830. https://doi.org/10.1001/archopht.120.6.701

The Advanced Glaucoma Intervention Study (AGIS) (2002) 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. Am J Ophthalmol 134(4):499–512

Grieshaber MC, Flammer J (2005) Blood flow in glaucoma. Curr Opin Ophthalmol 16(2):79–83

Article  PubMed  Google Scholar 

Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, Ferraz D, Korot E, Kelly C, Balaskas K, Denniston AK, Keane PA (2020) Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol 9(2):6. https://doi.org/10.1167/tvst.9.2.6. Erratum in (2021): Transl Vis Sci Technol 10(8):13. https://doi.org/10.1167/tvst.10.8.13

Harris A (1998) Regulation of retinal and optic nerve blood flow. Arch Ophthalmol 116(11):1491

Article  CAS  PubMed  Google Scholar 

Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM et al (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393

Article  PubMed  Google Scholar 

Mozaffarieh M, Grieshaber MC, Flammer J (2008) Oxygen and blood flow: players in the pathogenesis of glaucoma. Mol Vis 31(14):224–233

Google Scholar 

Karageuzyan K (2005) Oxidative stress in the molecular mechanism of pathogenesis at different diseased states of organism in clinics and experiment. Curr Drug Target –Inflamm Allergy 4(1):85–98

Article  CAS  Google Scholar 

Vernazza S, Tirendi S, Bassi AM, Traverso CE, Saccà SC (2020) Neuroinflammation in primary open-angle glaucoma. J Clin Med 9(10):3172

Article  CAS  PubMed  PubMed Central  Google Scholar 

Antón-López A, Moreno-Montã Nés J, Duch-Tuesta S, Corsino Fernández-Vila P, García-Feijoo J, Millá-Griñó E et al (2017) ARCHIVOS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGÍA Review Lifestyles guide and glaucoma (II). Diet, supplements, drugs, sleep, pregnancy, and systemic hypertension [Internet]. 2017. Available from: http://www.cebm.net/oxford-centre-evidence-based. Accessed 2017

Kim KE, Oh S, Baek SU, Ahn SJ, Park KH, Jeoung JW (2020) Ocular Perfusion pressure and the risk of open-angle glaucoma: systematic review and meta-analysis. Sci Rep 10(1):10056

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song BJ, Aiello LP, Pasquale LR (2016) Presence and risk factors for glaucoma in patients with diabetes. Curr Diabetes Rep 16:1 (Current Medicine Group LLC)

Article  Google Scholar 

Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA et al (2002) The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol 120(6):714–720

Article  PubMed  Google Scholar 

Gordon MO (2008) Is a history of diabetes mellitus protective against developing primary open-angle glaucoma? Arch Ophthalmol 126(2):280

Article  PubMed  Google Scholar 

Huang G, Wang J, Li L, Gao Y, Yan Y (2022) Meta-analysis of dyslipidemia and blood lipid parameters on the risk of primary open-angle glaucoma. Comput Math Methods Med 2022:1122994. https://doi.org/10.1155/2022/1122994

Yarmohammadi A, Zangwill LM, Diniz-Filho A, Suh MH, Manalastas PI, Fatehee N et al (2016) Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 57(9):OCT451-9

Article  PubMed  PubMed Central  Google Scholar 

Mendez-Hernandez C, Wang S, Arribas-Pardo P, Salazar-Quiñones L, Güemes-Villahoz N, Fernandez-Perez C et al (2021) Diagnostic validity of optic nerve head colorimetric assessment and optical coherence tomography angiography in patients with glaucoma. Br J Ophthalmol 105(7):957–963

Article  PubMed  Google Scholar 

Flammer J, Orgül S, Costa VP, Orzalesi N, Unter G, Krieglstein K, Serra LM, Renard JP, Stefánsson E (2002) The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 21(4):359–393. https://doi.org/10.1016/s1350-9462(02)00008-3

Chung JK, Hwang YH, Wi JM, Kim M, Jung JJ (2017) Glaucoma diagnostic ability of the optical coherence tomography angiography vessel density parameters. Curr Eye Res 42(11):1458–1467

Article  PubMed  Google Scholar 

Rao HL, Pradhan ZS, Suh MH, Moghimi S, Mansouri K, Weinreb RN (2020) Optical coherence tomography angiography in glaucoma. J Glaucoma 29(4):312–321. https://doi.org/10.1097/IJG.0000000000001463

Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA (2000) Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 107(10):1809–1815. https://doi.org/10.1016/s0161-6420(00)00284-0

Eid P, Arnould L, Gabrielle PH, Aho LS, Farnier M, Creuzot-Garcher C, Cottin Y (2022) Retinal microvascular changes in familial hypercholesterolemia: analysis with swept-source optical coherence tomography angiography. J Pers Med 12(6):871. https://doi.org/10.3390/jpm12060871

Sung JY, Lee KH, Jun JH, Lee MW (2023) Changes in peripapillary microvasculature in patients with type 2 diabetes patients: effect of systemic hypertension. Sci Rep 13(1):19459

Article  CAS  PubMed  PubMed Central  Google Scholar 

Stirban A, Gawlowski T, Roden M (2014) Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 3(2):94–108

Article  CAS  PubMed  Google Scholar 

Shin YI, Nam KY, Lee SE, Lee MW, Lim HB, Jo YJ et al (2019) Peripapillary microvasculature in patients with diabetes mellitus: an optical coherence tomography angiography study. Sci Rep 9(1):15814

Article  PubMed  PubMed Central  Google Scholar 

Chua J, Chin CWL, Hong J, Chee ML, Le TT, Ting DSW et al (2019) Impact of hypertension on retinal capillary microvasculature using optical coherence tomographic angiography. J Hypertens 37(3):572–580

Article  CAS  PubMed  Google Scholar 

Shin YI, Nam KY, Lee WH, Ryu CK, Lim HB, Jo YJ et al (2020) Peripapillary microvascular changes in patients with systemic hypertension: an optical coherence tomography angiography study. Sci Rep 10(1):6541

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng Q, Hu Y, Huang M, Wu Y, Zhong P, Dong X et al (2020) Retinal neurovascular impairment in patients with essential hypertension: an optical coherence tomography angiography study. Invest Opthalmol Vis Sci 61(8):42

Article  Google Scholar 

Gomez MS, Zeng N, Catagna Catagna GE, Arribas-Pardo P, Garcia-Feijoo J, Mendez-Hernandez C (2023) Effect of hypercholesterolemia, systemic arterial hypertension and diabetes mellitus on peripapillary and macular vessel density on superficial vascular plexus in glaucoma. J Clin Med [Internet] 12(5):2071. Available from: https://www.mdpi.com/2077-0383/12/5/2071. Accessed Mar 2023

Abay RN, Akdeniz GŞ, Katipoğlu Z, Kerimoğlu H (2022) Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn Ther 37:102624

Article  PubMed  Google Scholar 

Leung CKS, Yu M, Weinreb RN, Ye C, Liu S, Lai G et al (2012) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography. Ophthalmology 119(4):731–737

Article  PubMed  Google Scholar 

Parikh RS, Parikh SR, Sekhar GC, Prabakaran S, Babu JG, Thomas R (2007) Normal age-related decay of retinal nerve fiber layer thickness. Ophthalmology 114(5):921–926

Article  PubMed  Google Scholar 

Abay RN, Akdeniz GŞ, Katipoğlu Z, Kerimoğlu H (2022) Normative data assessment of age-related changes in macular and optic nerve head vessel density using optical coherence tomography angiography. Photodiagnosis Photodyn Ther 37:102624

Article  PubMed  Google Scholar 

Man N, Guo S, Yiu KFC, Leung CKS (2023) Multi-layer segmentation of retina OCT images via advanced U-net architecture. Neurocomputing 1(515):185–200

Article  Google Scholar 

Freedman IG, Li E, Hui L, Adelman RA, Nwanyanwu K, Wang JC (2022) The impact of image processing algorithms on optical coherence tomography angiography metrics and study conclusions in diabetic retinopathy. Transl Vis Sci Technol 11(9):7. https://doi.org/10.1167/tvst.11.9.7

Rezkallah A, Douma I, Bonjour M, Mathis T, Kodjikian L, Denis P (2022) Evaluation of the correlation between regional retinal ganglion cell damage and visual field sensitivity in patients with advanced glaucoma. J Clin Med 11(16):4880. https://doi.org/10.3390/jcm11164880

留言 (0)

沒有登入
gif