The association between asymmetric stress distribution on the lamina cribrosa and glaucoma progression

Odberg T, Riise D (1985) Early diagnosis of glaucoma. The value of successive stereophotography of the optic disc. Acta Ophthalmol 63:257–263. https://doi.org/10.1111/j.1755-3768.1985.tb06801.x

Article  CAS  Google Scholar 

Caprioli J, Miller JM, Sears M (1987) Quantitative evaluation of the optic nerve head in patients with unilateral visual field loss from primary open-angle glaucoma. Ophthalmology 94:1484–1487. https://doi.org/10.1016/S0161-6420(87)33264-6

Article  CAS  PubMed  Google Scholar 

Downs JC (2015) Optic nerve head biomechanics in aging and disease. Exp Eye Res 133:19–29. https://doi.org/10.1016/j.exer.2015.02.011

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sigal IA, Grimm JL (2012) A few good responses: which mechanical effects of IOP on the ONH to study? Invest Ophthalmol Vis Sci 53:4270–4278. https://doi.org/10.1167/iovs.11-8739

Article  PubMed  PubMed Central  Google Scholar 

Wang B, Lucy KA, Schuman JS et al (2018) Tortuous pore path through the glaucomatous lamina cribrosa. Sci Rep 8:7281. https://doi.org/10.1038/s41598-018-25645-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hollander H, Makarov F, Stefani FH, Stone J (1995) Evidence of constriction of optic nerve axons at the lamina cribrosa in the normotensive eye in humans and other mammals. Ophthalmic Res 27:296–309. https://doi.org/10.1159/000267739

Article  CAS  PubMed  Google Scholar 

Kwok S, Ma YH, Pan XL, Liu J (2023) Three-dimensional ultrasound elastography detects age-related increase in anterior peripapillary sclera and optic nerve head compression during IOP elevation. Invest Ophthalmol Vis Sci 64:16. https://doi.org/10.1167/iovs.64.7.16

Article  PubMed  PubMed Central  Google Scholar 

Fazio MA, Grytz R, Morris JS et al (2014) Age-related changes in human peripapillary scleral strain. Biomech Model Mechanobiol 13:551–563. https://doi.org/10.1007/s10237-013-0517-9

Article  PubMed  Google Scholar 

Jonas JB, Berenshtein E, Holbach L (2003) Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci 44:5189–5195. https://doi.org/10.1167/iovs.03-0174

Article  PubMed  Google Scholar 

Wang X, Rumpel H, Lim WE et al (2016) Finite element analysis predicts large optic nerve head strains during horizontal eye movements. Invest Ophthalmol Vis Sci 57:2452–2462. https://doi.org/10.1167/iovs.15-18986

Article  PubMed  Google Scholar 

Schiller PH, Tehovnik EJ (2005) Neural mechanisms underlying target selection with saccadic eye movements. Prog Brain Res 149:157–171. https://doi.org/10.1016/S0079-6123(05)49012-3

Article  PubMed  Google Scholar 

Midgett DE, Quigley HA, Nguyen TD (2019) In vivo characterization of the deformation of the human optic nerve head using optical coherence tomography and digital volume correlation. Acta Biomater 96:385–399. https://doi.org/10.1016/j.actbio.2019.06.050

Article  PubMed  PubMed Central  Google Scholar 

Chuangsuwanich T, Tun TA, Braeu FA et al (2023) How myopia and glaucoma influence the biomechanical susceptibility of the optic nerve head. Invest Ophthalmol Vis Sci 64:12. https://doi.org/10.1167/iovs.64.11.12

Article  PubMed  PubMed Central  Google Scholar 

Sigal IA, Flanagan JG, Tertinegg I, Ethier CR (2004) Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci 45:4378–4387. https://doi.org/10.1167/iovs.04-0133

Article  PubMed  Google Scholar 

Mwanza JC, Kim HY, Budenz DL et al (2015) Residual and dynamic range of retinal nerve fiber layer thickness in glaucoma: comparison of three OCT platforms. Invest Ophthalmol Vis Sci 56:6344–6351. https://doi.org/10.1167/iovs.15-17248

Article  PubMed  PubMed Central  Google Scholar 

Na JH, Sung KR, Baek S et al (2012) Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:3817–3826. https://doi.org/10.1167/iovs.11-9369

Article  PubMed  Google Scholar 

Leung CKS, Cheung CYL, Weinreb RN et al (2009) Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology 116:1257–1263. https://doi.org/10.1016/j.ophtha.2009.04.013

Article  PubMed  Google Scholar 

Shin JW, Sung KR, Lee J, Kwon J (2017) Factors associated with visual field progression in cirrus optical coherence tomography-guided progression analysis: A topographic approach. J Glaucoma 26:555–560. https://doi.org/10.1097/IJG.0000000000000680

Article  PubMed  Google Scholar 

Wanichwecharungruang B, Kongthaworn A, Wagner D, Ruamviboonsuk P, Seresirikachorn K (2021) Comparative study of lamina cribrosa thickness between primary angle-closure and primary open-angle glaucoma. Clin Ophthalmol 15:697–705. https://doi.org/10.2147/OPTH.S296115

Article  PubMed  PubMed Central  Google Scholar 

Safa BN, Bleeker A, Berdahl JP, Ethier CR (2023) The effects of negative periocular pressure on biomechanics of the optic nerve head and cornea: A computational modeling study. Transl Vis Sci Technol 12:5. https://doi.org/10.1167/tvst.12.2.5

Article  PubMed  PubMed Central  Google Scholar 

Kong M, Choi DY, Han G et al (2018) Measurable range of subfoveal choroidal thickness with conventional spectral domain optical coherence tomography. Transl Vis Sci Technol 7:16. https://doi.org/10.1167/tvst.7.5.16

Article  PubMed  PubMed Central  Google Scholar 

Stevens RRF, Gommer ED, Aries MJH et al (2021) Optic nerve sheath diameter assessment by neurosonology: A review of methodologic discrepancies. J Neuroimaging 31:814–825. https://doi.org/10.1111/jon.12906

Article  PubMed  Google Scholar 

Jung YH, Park HYL, Jung KI, Park CK (2015) Comparison of prelaminar thickness between primary open angle glaucoma and normal tension glaucoma patients. PLoS ONE 10:e0120634. https://doi.org/10.1371/journal.pone.0120634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang L, Beotra MR, Baskaran M et al (2020) In vivo measurements of prelamina and lamina cribrosa biomechanical properties in humans. Invest Ophthalmol Vis Sci 61:27. https://doi.org/10.1167/iovs.61.3.27

Article  PubMed  PubMed Central  Google Scholar 

Nguyen BA, Roberts CJ, Reilly MA (2019) Biomechanical impact of the sclera on corneal deformation response to an air-puff: A finite-element study. Front Bioeng Biotechnol 6:210. https://doi.org/10.3389/fbioe.2018.00210

Article  PubMed  PubMed Central  Google Scholar 

Eilaghi A, Flanagan JG, Simmons CA, Ethier CR (2010) Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng 38:1586–1592. https://doi.org/10.1007/s10439-009-9879-7

Article  PubMed  Google Scholar 

Liu X, Thadesar PA, Taylor CL et al (2013) Thermomechanical strain measurements by synchrotron x-ray diffraction and data interpretation for through-silicon vias. Appl Phys Lett 103:022107. https://doi.org/10.1063/1.4813742

Article  CAS  Google Scholar 

Chuangsuwanich T, Tun TA, Braeu FA et al (2024) Adduction induces large optic nerve head deformations in subjects with normal-tension glaucoma. Br J Ophthalmol 108:522–529. https://doi.org/10.1136/bjo-2022-322461

Article  PubMed  Google Scholar 

Shin A, Yoo L, Park J, Demer JL (2017) Finite element biomechanics of optic nerve sheath traction in adduction. J Biomech Eng 139:1010101–10101010. https://doi.org/10.1115/1.4037562

Article  PubMed  PubMed Central  Google Scholar 

Fisher LK, Wang X, Tun TA, Chung HW, Milea D, Girard MJA (2021) Gaze-evoked deformations of the optic nerve head in thyroid eye disease. Br J Ophthalmol 105:1758–1764.

留言 (0)

沒有登入
gif