Manipulating disorder within cathodes of alkali-ion batteries

Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. A 89, 248–277 (1913).

CAS  Google Scholar 

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).

Article  CAS  Google Scholar 

Reynaud, M., Serrano-Sevillano, J. & Casas-Cabanas, M. Imperfect battery materials: a closer look at the role of defects in electrochemical performance. Chem. Mater. 35, 3345–3363 (2023). This paper categorizes various defects in battery materials.

Article  CAS  Google Scholar 

Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020). This paper highlights the design principles to control the correlated disorder in a wide range of materials.

Article  CAS  PubMed  Google Scholar 

Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226–243 (2021).

Article  CAS  Google Scholar 

Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).

Article  CAS  Google Scholar 

He, Z., Taniyama, T., Kyômen, T. & Itoh, M. Field-induced order-disorder transition in the quasi-one-dimensional anisotropic antiferromagnet BaCo2V2O8. Phys. Rev. B 72, 172403 (2005).

Article  Google Scholar 

Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

Article  CAS  PubMed  Google Scholar 

Yu, Z. et al. Pressure effect on order–disorder ferroelectric transition in a hydrogen-bonded metal–organic framework. J. Phys. Chem. Lett. 11, 9566–9571 (2020).

Article  CAS  PubMed  Google Scholar 

Maier, J. Review — battery materials: why defect chemistry? J. Electrochem. Soc. 162, A2380–A2386 (2015).

Article  CAS  Google Scholar 

Shan, X. et al. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Gao, A. et al. In operando visualization of cation disorder unravels voltage decay in Ni‐rich cathodes. Small Methods 5, 2000730 (2021).

Article  CAS  Google Scholar 

Ashton, T. E. et al. Stoichiometrically driven disorder and local diffusion in NMC cathodes. J. Mater. Chem. A 9, 10477–10486 (2021).

Article  CAS  Google Scholar 

Zhu, H. et al. Bridging structural inhomogeneity to functionality: pair distribution function methods for functional materials development. Adv. Sci. 8, 2003534 (2021).

Article  CAS  Google Scholar 

Huang, W. et al. Elastic lattice enabling reversible tetrahedral Li storage sites in a high‐capacity manganese oxide cathode. Adv. Mater. 34, 2202745 (2022).

Article  CAS  Google Scholar 

Szymanski, N. J. et al. Modeling short-range order in disordered rocksalt cathodes by pair distribution function analysis. Chem. Mater. 35, 4922–4934 (2023).

Article  CAS  Google Scholar 

Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699–730 (1934).

CAS  Google Scholar 

Bethe, H. A. Statistical theory of superlattices. Proc. R. Soc. A 150, 552–575 (1935).

CAS  Google Scholar 

Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).

Article  CAS  Google Scholar 

Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950).

Article  CAS  Google Scholar 

Welberry, T. R. & Butler, B. D. Diffuse X-ray scattering from disordered crystals. Chem. Rev. 95, 2369–2403 (1995).

Article  CAS  Google Scholar 

Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015). This paper first introduces the concept of correlated disorder of solid-state materials.

Article  CAS  PubMed  Google Scholar 

Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).

Article  CAS  Google Scholar 

Snyder, J., Slusky, J. S., Cava, R. J. & Schiffer, P. How ‘spin ice’ freezes. Nature 413, 48–51 (2001).

Article  CAS  PubMed  Google Scholar 

Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).

Article  CAS  PubMed  Google Scholar 

Fabrèges, X. et al. Spin-lattice coupling, frustration, and magnetic order in multiferroic R MnO3. Phys. Rev. Lett. 103, 067204 (2009).

Article  PubMed  Google Scholar 

Wen, J.-J. et al. Disordered route to the Coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7. Phys. Rev. Lett. 118, 107206 (2017).

Article  PubMed  Google Scholar 

Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).

Article  CAS  PubMed  Google Scholar 

Playford, H. Y., Whale, T. F., Murray, B. J., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).

Article  CAS  Google Scholar 

Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

Article  CAS  PubMed  Google Scholar 

Düvel, A. et al. Is geometric frustration-induced disorder a recipe for high ionic conductivity? J. Am. Chem. Soc. 139, 5842–5848 (2017).

Article  PubMed  Google Scholar 

Di Stefano, D. et al. Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019).

Article  Google Scholar 

Wang, S., Liu, Y. & Mo, Y. Frustration in super‐ionic conductors unraveled by the density of atomistic states. Angew. Chem. 135, e202215544 (2023).

Article  Google Scholar 

Hsu, W.-L., Tsai, C.-W., Yeh, A.-C. & Yeh, J.-W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).

Article  PubMed  Google Scholar 

Aubry, S. & Hughes, D. A. Reductions in stacking fault widths in fcc crystals: semiempirical calculations. Phys. Rev. B 73, 224116 (2006).

Article  Google Scholar 

Baruffi, C., Ghazisaeidi, M., Rodney, D. & Curtin, W. A. Equilibrium versus non-equilibrium stacking fault widths in NiCoCr. Scr. Mater. 235, 115536 (2023).

Article  CAS  Google Scholar 

Coles, S. W. et al. Anion-polarisation-directed short-range-order in antiperovskite Li2FeSO. J. Mater. Chem. A 11, 13016–13026 (2023).

Article  CAS  Google Scholar 

Uemura, N., Shirai, K., Eckert, H. & Kunstmann, J. Structure, nonstoichiometry, and geometrical frustration of α-tetragonal boron. Phys. Rev. B 93, 104101 (2016).

Article  Google Scholar 

Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).

留言 (0)

沒有登入
gif