Bragg, W. L. The structure of some crystals as indicated by their diffraction of X-rays. Proc. R. Soc. A 89, 248–277 (1913).
Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969).
Reynaud, M., Serrano-Sevillano, J. & Casas-Cabanas, M. Imperfect battery materials: a closer look at the role of defects in electrochemical performance. Chem. Mater. 35, 3345–3363 (2023). This paper categorizes various defects in battery materials.
Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020). This paper highlights the design principles to control the correlated disorder in a wide range of materials.
Article CAS PubMed Google Scholar
Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226–243 (2021).
Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal-organic frameworks. Nat. Chem. 9, 11–16 (2017).
He, Z., Taniyama, T., Kyômen, T. & Itoh, M. Field-induced order-disorder transition in the quasi-one-dimensional anisotropic antiferromagnet BaCo2V2O8. Phys. Rev. B 72, 172403 (2005).
Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).
Article CAS PubMed Google Scholar
Yu, Z. et al. Pressure effect on order–disorder ferroelectric transition in a hydrogen-bonded metal–organic framework. J. Phys. Chem. Lett. 11, 9566–9571 (2020).
Article CAS PubMed Google Scholar
Maier, J. Review — battery materials: why defect chemistry? J. Electrochem. Soc. 162, A2380–A2386 (2015).
Shan, X. et al. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nat. Commun. 10, 4975 (2019).
Article PubMed PubMed Central Google Scholar
Gao, A. et al. In operando visualization of cation disorder unravels voltage decay in Ni‐rich cathodes. Small Methods 5, 2000730 (2021).
Ashton, T. E. et al. Stoichiometrically driven disorder and local diffusion in NMC cathodes. J. Mater. Chem. A 9, 10477–10486 (2021).
Zhu, H. et al. Bridging structural inhomogeneity to functionality: pair distribution function methods for functional materials development. Adv. Sci. 8, 2003534 (2021).
Huang, W. et al. Elastic lattice enabling reversible tetrahedral Li storage sites in a high‐capacity manganese oxide cathode. Adv. Mater. 34, 2202745 (2022).
Szymanski, N. J. et al. Modeling short-range order in disordered rocksalt cathodes by pair distribution function analysis. Chem. Mater. 35, 4922–4934 (2023).
Bragg, W. L. & Williams, E. J. The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. A 145, 699–730 (1934).
Bethe, H. A. Statistical theory of superlattices. Proc. R. Soc. A 150, 552–575 (1935).
Onsager, L. Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944).
Cowley, J. M. An approximate theory of order in alloys. Phys. Rev. 77, 669–675 (1950).
Welberry, T. R. & Butler, B. D. Diffuse X-ray scattering from disordered crystals. Chem. Rev. 95, 2369–2403 (1995).
Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015). This paper first introduces the concept of correlated disorder of solid-state materials.
Article CAS PubMed Google Scholar
Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).
Snyder, J., Slusky, J. S., Cava, R. J. & Schiffer, P. How ‘spin ice’ freezes. Nature 413, 48–51 (2001).
Article CAS PubMed Google Scholar
Fennell, T. et al. Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415–417 (2009).
Article CAS PubMed Google Scholar
Fabrèges, X. et al. Spin-lattice coupling, frustration, and magnetic order in multiferroic R MnO3. Phys. Rev. Lett. 103, 067204 (2009).
Wen, J.-J. et al. Disordered route to the Coulomb quantum spin liquid: random transverse fields on spin ice in Pr2Zr2O7. Phys. Rev. Lett. 118, 107206 (2017).
Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).
Article CAS PubMed Google Scholar
Playford, H. Y., Whale, T. F., Murray, B. J., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).
Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).
Article CAS PubMed Google Scholar
Düvel, A. et al. Is geometric frustration-induced disorder a recipe for high ionic conductivity? J. Am. Chem. Soc. 139, 5842–5848 (2017).
Di Stefano, D. et al. Superionic diffusion through frustrated energy landscape. Chem 5, 2450–2460 (2019).
Wang, S., Liu, Y. & Mo, Y. Frustration in super‐ionic conductors unraveled by the density of atomistic states. Angew. Chem. 135, e202215544 (2023).
Hsu, W.-L., Tsai, C.-W., Yeh, A.-C. & Yeh, J.-W. Clarifying the four core effects of high-entropy materials. Nat. Rev. Chem. 8, 471–485 (2024).
Aubry, S. & Hughes, D. A. Reductions in stacking fault widths in fcc crystals: semiempirical calculations. Phys. Rev. B 73, 224116 (2006).
Baruffi, C., Ghazisaeidi, M., Rodney, D. & Curtin, W. A. Equilibrium versus non-equilibrium stacking fault widths in NiCoCr. Scr. Mater. 235, 115536 (2023).
Coles, S. W. et al. Anion-polarisation-directed short-range-order in antiperovskite Li2FeSO. J. Mater. Chem. A 11, 13016–13026 (2023).
Uemura, N., Shirai, K., Eckert, H. & Kunstmann, J. Structure, nonstoichiometry, and geometrical frustration of α-tetragonal boron. Phys. Rev. B 93, 104101 (2016).
Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 14, 477–485 (1926).
留言 (0)