Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al. A mutant-p53/Smad complex opposes p63 to empower TGFβ-induced metastasis. Cell. 2009;137(1):87–98. https://doi.org/10.1016/j.cell.2009.01.039.
Article CAS PubMed Google Scholar
Bae D-S, Blazanin N, Licata M, Lee J, Glick AB. Tumor suppressor and oncogene actions of TGFβ1 occur early in skin carcinogenesis and are mediated by Smad3. Mol Carcinog. 2009;48(5):441–53. https://doi.org/10.1002/mc.20482.
Article CAS PubMed Google Scholar
Balzeau J, Menezes MR, Cao S, Hagan JP. The LIN28/let-7 Pathway in Cancer. Front. Genet. 2017 [accessed 2023 Jul 23];8. https://doi.org/10.3389/fgene.2017.00031/full. https://doi.org/10.3389/fgene.2017.00031
Bedi A, Chang X, Noonan K, Pham V, Bedi R, Fertig EJ, Considine M, Califano JA, Borrello I, Chung CH, et al. Inhibition of TGF-β enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012;11(11):2429–39. https://doi.org/10.1158/1535-7163.MCT-12-0101-T.
Article CAS PubMed Google Scholar
Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Pérez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120(1):6–15. https://doi.org/10.1038/s41416-018-0328-y.
Article CAS PubMed Google Scholar
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol. 2023;14:1174330. https://doi.org/10.3389/fphar.2023.1174330.
Article CAS PubMed Google Scholar
Bissey P-A, Teng M, Law JH, Shi W, Bruce JP, Petit V, Tsao SW, Yip KW, Liu F-F. MiR-34c downregulation leads to SOX4 overexpression and cisplatin resistance in nasopharyngeal carcinoma. BMC Cancer. 2020;20(1):597. https://doi.org/10.1186/s12885-020-07081-z.
Article CAS PubMed Google Scholar
Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, et al. Radiotherapy plus Cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78. https://doi.org/10.1056/NEJMoa053422.
Article CAS PubMed Google Scholar
Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66. https://doi.org/10.1038/nrc1997.
Article CAS PubMed Google Scholar
Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, Cavenee WK, Chen Z, Croce CM, Andrea AD, et al. Consensus report of the 8 and 9th Weinman Symposia on Gene x Environment Interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ. 2018;25(11):1885–904. https://doi.org/10.1038/s41418-018-0213-5.
Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev. 2002;23(6):787–823. https://doi.org/10.1210/er.2002-0003.
Article CAS PubMed Google Scholar
Chen L, Sun D-Z, Fu Y-G, Yang P-Z, Lv H-Q, Gao Y, Zhang X-Y. Upregulation of microRNA-141 suppresses epithelial-mesenchymal transition and lymph node metastasis in laryngeal cancer through HOXC6-dependent TGF-β signaling pathway. Cellular Signal. 2020;66: 109444. https://doi.org/10.1016/j.cellsig.2019.109444.
Chen L, Zhu Q, Lu L, Liu Y. MiR-132 inhibits migration and invasion and increases chemosensitivity of cisplatin-resistant oral squamous cell carcinoma cells via targeting TGF-β1. Bioengineered. 2020;11(1):91–102. https://doi.org/10.1080/21655979.2019.1710925.
Article CAS PubMed Google Scholar
Chen S, Zhang J, Sun L, Li X, Bai J-Y, Zhang H, Li T. miR-762 promotes malignant development of head and neck squamous cell carcinoma by targeting PHLPP2 and FOXO4. Onco Targets Ther. 2019;12:11425–36. https://doi.org/10.2147/OTT.S221442.
Article CAS PubMed Google Scholar
Cheng CM, Shiah SG, Huang CC, Hsiao JR, Chang JY. Up-regulation of miR-455-5p by the TGF-β-SMAD signalling axis promotes the proliferation of oral squamous cancer cells by targeting UBE2B: MiR-455-5p regulates oral cancer cell proliferation through UBE2B. J Pathol. 2016;240(1):38–49. https://doi.org/10.1002/path.4752.
Article CAS PubMed Google Scholar
Chikuda J, Otsuka K, Shimomura I, Ito K, Miyazaki H, Takahashi R, Nagasaki M, Mukudai Y, Ochiya T, Shimane T, et al. CD44s induces miR-629-3p expression in association with cisplatin resistance in head and neck cancer cells. Cancers. 2020;12(4):856. https://doi.org/10.3390/cancers12040856.
Article CAS PubMed Google Scholar
Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT. A let-7 microRNA-binding site polymorphism in the KRAS 3’ UTR is associated with reduced survival in oral cancers. Carcinogenesis. 2009;30(6):1003–7. https://doi.org/10.1093/carcin/bgp099.
Article CAS PubMed Google Scholar
Chu T-H, Yang C-C, Liu C-J, Lui M-T, Lin S-C, Chang K-W. miR-211 promotes the progression of head and neck carcinomas by targeting TGFβRII. Cancer Lett. 2013;337(1):115–24. https://doi.org/10.1016/j.canlet.2013.05.032.
Article CAS PubMed Google Scholar
Chu YH, Tzeng SL, Lin CW, Chien MH, Chen MK, Yang SF. Impacts of MicroRNA Gene Polymorphisms on the Susceptibility of Environmental Factors Leading to Carcinogenesis in Oral Cancer. Christensen BC, editor. PLoS ONE. 2012;7(6):e39777. https://doi.org/10.1371/journal.pone.0039777
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102(39):13944–9. https://doi.org/10.1073/pnas.0506654102.
Article CAS PubMed Google Scholar
Cui W, Meng W, Zhao L, Cao H, Chi W, Wang B. TGF-β-induced long non-coding RNA MIR155HG promotes the progression and EMT of laryngeal squamous cell carcinoma by regulating the miR-155–5p/SOX10 axis. Int J Oncol. 2019 Apr 12 [accessed 2023 Mar 25].https://doi.org/10.3892/ijo.2019.4784. https://doi.org/10.3892/ijo.2019.4784
Douglas WG, Tracy E, Tan D, Yu J, Hicks WL, Rigual NR, Loree TR, Wang Y, Baumann H. Development of head and neck squamous cell carcinoma is associated with altered cytokine responsiveness. Mol Cancer Res. 2004;2(10):585–93.
Article CAS PubMed Google Scholar
Expósito-Villén A, Aránega E, Franco D. Functional role of non-coding RNAs during epithelial-to-mesenchymal transition. NonCoding RNA. 2018;4(2):14. https://doi.org/10.3390/ncrna4020014.
Article CAS PubMed Google Scholar
Falco M, Tammaro C, Takeuchi T, Cossu AM, Scafuro G, Zappavigna S, Itro A, Addeo R, Scrima M, Lombardi A, et al. Overview on molecular biomarkers for laryngeal cancer: looking for new answers to an old problem. Cancers. 2022;14(7):1716. https://doi.org/10.3390/cancers14071716.
Article CAS PubMed Google Scholar
Freudlsperger C, Bian Y, Contag Wise S, Burnett J, Coupar J, Yang X, Chen Z, Van Waes C. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene. 2013;32(12):1549–59. https://doi.org/10.1038/onc.2012.171.
Article CAS PubMed Google Scholar
Frixa T, Donzelli S, Blandino G. Oncogenic MicroRNAs: key players in malignant transformation. Cancers. 2015;7(4):2466–85. https://doi.org/10.3390/cancers7040904.
Article CAS PubMed Google Scholar
Gao W, Zhang C, Li W, Li H, Sang J, Zhao Q, Bo Y, Luo H, Zheng X, Lu Y, et al. Promoter methylation-regulated miR-145-5p inhibits laryngeal squamous cell carcinoma progression by targeting FSCN1. Mol Ther. 2019;27(2):365–79. https://doi.org/10.1016/j.ymthe.2018.09.018.
Article CAS PubMed Google Scholar
Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Pathol Mech Dis. 2009;60(1):167–79. https://doi.org/10.1146/annurev.med.59.053006.104707.
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov. 2010;9(10):775–89. https://doi.org/10.1038/nrd3179.
留言 (0)