The phosphate-solubilising fungi in sustainable agriculture: unleashing the potential of fungal biofertilisers for plant growth

Abd El-Latif H, Mohamed HM (2011) Molecular genetic identification of yeast strains isolated from Egyptian soils for solubilization of inorganic phosphates and growth promotion of corn plants. J Microbiol Biotechnol 21:55–61. https://doi.org/10.4014/jmb.1006.06045

Article  CAS  Google Scholar 

Ahuja A, Ghosh SB, D’Souza SF (2007) Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization. Bioresour Technol 98:3408–3411. https://doi.org/10.1016/j.biortech.2006.10.041

Article  CAS  PubMed  Google Scholar 

Akbar M, Chohan SA, Yasin NA et al (2023) Mycorrhizal inoculation enhanced tillering in field grown wheat, nutritional enrichment and soil properties. PeerJ 11:e15686. https://doi.org/10.7717/peerj.15686

Article  CAS  PubMed  PubMed Central  Google Scholar 

Al-Fatih AM (2005) Phosphate solubilization in vitro by some soil yeasts. Qatar Univ Sci J 25:9–125. http://hdl.handle.net/10576/9742

Almario J, Jeena G, Wunder J et al (2017) Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci U S A 114:E9403–E9412. https://doi.org/10.1073/pnas.1710455114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

Article  PubMed  PubMed Central  Google Scholar 

Bielčik M, Aguilar-Trigueros CA, Lakovic M et al (2019) The role of active movement in fungal ecology and community assembly. Mov Ecol 7:36. https://doi.org/10.1186/s40462-019-0180-6

Article  PubMed  PubMed Central  Google Scholar 

Birhanu G, Zerihun T, Genene T et al (2017) Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. Afr J Microbiol Res 11:687–696. https://doi.org/10.5897/ajmr2017.8525

Article  CAS  Google Scholar 

Bononi L, Chiaramonte JB, Pansa CC et al (2020) Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Sci Rep 10:2858. https://doi.org/10.1038/s41598-020-59793-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borges Chagas LF, Chagas Junior AF, Rodrigues de Carvalho M et al (2015) Evaluation of the phosphate solubilization potential of Trichoderma strains (Trichoplus JCO) and effects on rice biomass. J Soil Sci Plant Nutr 15:794–804. https://doi.org/10.4067/S0718-95162015005000054

Article  Google Scholar 

Boubekri K, Soumare A, Lyamlouli K et al (2023) Improving the efficiency of phosphate rocks combined with phosphate solubilizing Actinomycetota to increase wheat growth under alkaline and acidic soils. Front Plant Sci 14:1154372. https://doi.org/10.3389/fpls.2023.1154372

Article  PubMed  PubMed Central  Google Scholar 

Central Research Institute for Dryland Agriculture (CRIDA) (2023) Biofertilizers in rainfed farming. https://assets.publishing.service.gov.uk/media/57a08ce4ed915d3cfd0016bc/R8192Bio.pdf

Chen YR, Kuo CY, Fu SF et al (2023) Plant growth-promoting properties of the phosphate-solubilizing red yeast Rhodosporidium paludigenum. World J Microbiol Biotechnol 39:54. https://doi.org/10.1007/s11274-022-03498-9

Article  CAS  Google Scholar 

Chouyia FE, Ventorino V, Pepe O (2022) Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: a review. Front Plant Sci 13:1035358. https://doi.org/10.3389/fpls.2022.1035358

Article  PubMed  PubMed Central  Google Scholar 

Chuang CC, Kuo YL, Chao CC et al (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584. https://doi.org/10.1007/s00374-006-0140-3

Article  CAS  Google Scholar 

Cui K, Xu T, Chen J et al (2022) Siderophores, a potential phosphate solubilizer from the endophyte Streptomyces sp. CoT10, improved phosphorus mobilization for host plant growth and rhizosphere modulation. J Clean Prod 367:133110. https://doi.org/10.1016/j.jclepro.2022.133110

Article  CAS  Google Scholar 

Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458. https://doi.org/10.1128/aem.58.5.1451-1458.1992

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Oliveira MG, de Freitas ALM, Pereira OL et al (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239–249. https://doi.org/10.1007/s13213-013-0656-3

Article  CAS  Google Scholar 

de Oliveira MJ, Murta HM, Valadares RV et al (2020) Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Miner Eng 155:106458. https://doi.org/10.1016/j.mineng.2020.106458

Article  CAS  Google Scholar 

Doilom M, Guo JW, Phookamsak R et al (2020) Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front Microbiol 11:585215. https://doi.org/10.3389/fmicb.2020.585215

Article  PubMed  PubMed Central  Google Scholar 

Falih AM, Wainwright M (1995) Nitrification, S-oxidation and P-solubilization by the soil yeast Williopsis californica and by Saccharomyces cerevisiae. Mycol Res 99:200–204. https://doi.org/10.1016/S0953-7562(09)80886-1

Article  CAS  Google Scholar 

Gizaw B (2017) Phosphate solubilizing yeast isolated and characterized from Teff rhizosphere soil collected from Gojam; Ethiopia. J Bacteriol Mycol 5:218–223

Google Scholar 

Gudiño-Gomezjurado ME, de Almeida LR, de Carvalho TS et al (2022) Phosphate–solubilizing fungi co–inoculated with Bradyrhizobium promote cowpea growth under varying N and P fertilization conditions. Sci Agric 79:e20210061. https://doi.org/10.1590/1678-992X-2021-0061

Article  Google Scholar 

Hermosa R, Viterbo A, Chet I et al (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25. https://doi.org/10.1099/mic.0.052274-0

Article  CAS  PubMed  Google Scholar 

Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates—solubilization mechanisms. Soil Biol Biochem 27:257–263. https://doi.org/10.1016/0038-0717(94)00190-C

Article  CAS  Google Scholar 

Jain R, Saxena J, Sharma V (2012) Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean (Vigna radiata cv. RMG 492) growth. Folia Microbiol 57:533–541. https://doi.org/10.1007/s12223-012-0167-9

Article  CAS  Google Scholar 

Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215–243. https://doi.org/10.1111/j.1469-185X.1987.tb00664.x

Article  CAS  Google Scholar 

Jiang Y, Tian J, Ge F (2020) New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4. Curr Microbiol 77:4095–4103. https://doi.org/10.1007/s00284-020-02238-2

Article  CAS  PubMed  Google Scholar 

Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, Berlin, Heidelberg

Book  Google Scholar 

Khan MS, Zaidi A, Ahemad M et al (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98. https://doi.org/10.1080/03650340902806469

Article  CAS  Google Scholar 

Khan MS, Zaidi A, Ahmad E (2014) Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In: Khan M, Zaidi A, Musarrat J (eds) Phosphate solubilizing microorganisms. Springer, Cham, Switzerland, pp 31–62

Chapter  Google Scholar 

Kononova SV, Nesmeyanova MA (2002) Phosphonates and their degradation by microorganisms. Biochem (Moscow) 67:220–233. https://doi.org/10.1023/a:1014409929875

Article  Google Scholar 

Kour D, Rana KL, Kaur T et al (2021) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1

Article 

留言 (0)

沒有登入
gif