Potential therapeutic effects of ester derivatives of Ribavirin against SARS-CoV-2

Liu Z, Ying Y. The inhibitory effect of curcumin on virus-induced cytokine storm and its potential use in the associated severe pneumonia. Front Cell Dev Biol. 2020;8:479. https://doi.org/10.3389/fcell.2020.00479.

Article  PubMed  PubMed Central  Google Scholar 

Sachs JD, Karim SA, Aknin L, Allen J, Brosbol K, Barron GC, Bartels JG. Lancet COVID-19 Commission Statement on the occasion of the 75th session of the UN General Assembly. Lancet. 2020;396:1102–24. https://doi.org/10.1016/S0140-6736(20)31927-9.

Article  CAS  Google Scholar 

Beyrer C, Allotey P, Amon JJ, Baral SD, Bassett MT, Deacon H, Dean LT, Fan L, Giacaman R, Gomes C, Gruskin S, Jabbour S, Kazatchkine M, Stackpool-Moore L, Maleche A, McKee M, Mon SHH, Paiva V, Peryskina A, Corey L. Human rights and fair access to COVID-19 vaccines: The International AIDS Society–Lancet Commission on Health and Human Rights. Lancet. 2021;397:1524–7. https://doi.org/10.1016/S0140-6736(21)00708-X.

Article  CAS  Google Scholar 

Hotez P, Batista C, Ergonul O, Figueroa JP, Gilbert S, Gursel M, Bottazzi ME. Correcting COVID-19 vaccine misinformation: Lancet Commission on COVID-19 vaccines and therapeutics task force members. E Clin Med. 2021;33. https://doi.org/10.1016/j.eclinm.2021.100780.

Seth RB, Sun L, Chen ZJ. Anti-viral innate immunity pathways. Cell Res. 2006;16:141–7. https://doi.org/10.1038/sj.cr.7310019.

Article  CAS  PubMed  Google Scholar 

Lariccia V, Magi S, Serfilippi T, Toujani M, Gratteri S, Amoroso S. Challenges and opportunities from targeting inflammatory responses to SARS-CoV-2 infection: a narrative review. J Clin Med. 2020;9:4021 https://doi.org/10.3390/jcm9124021.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Otsuka R, Seino K-i. Macrophage activation syndrome and COVID-19. Inflamm Regen. 2020;40:1–6. https://doi.org/10.1186/s41232-020-00131-w.

Article  CAS  Google Scholar 

Bassetti M, Vena A, Giacobbe DR. The novel Chinese coronavirus (2019‐nCoV) infections: Challenges for fighting the storm. Eur J Clin Investig. 2020;50. https://doi.org/10.1111/eci.13209

Fara A, Mitrev Z, Rosalia RA, Assas BM. Cytokine storm and COVID-19: a chronicle of pro-inflammatory cytokines. Open Biol. 2020;10:200160 https://doi.org/10.1098/rsob.200160.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu B, Li M, Zhou Z, Guan X, Xiang Y. Can we use interleukin-6 (IL-6)blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS). J Autoimmun. 2020;111:102452. https://doi.org/10.1016/j.jaut.2020.102452.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Valle DM, Kim-Schulze S, Huang H-H, Beckmann ND, Nirenberg S, Wang B, Stock A. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636–43. https://doi.org/10.1038/s41591-020-1051-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lang FM, Lee KM-C, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol. 2020:507–14. https://doi.org/10.1038/s41577-020-0357-7.

Kokic G, Hillen HS, Tegunov D, Dienemann C, Seitz F, Schmitzova J, Farnung L, Siewert A, Hobartner C, Cramer P. Mechanism of SARS-CoV-2 polymerase stalling by remdesivir. Nat Commun. 2021;12:1–7. https://doi.org/10.1038/s41467-020-20542-0.

Article  CAS  Google Scholar 

Starker S, Ahuja T, Banerjee M, Dogra S, Agarwal T, Nampoothiri M. Hydroxychloroquine in COVID-19: a potential mechanism of action against SARS-CoV-2. Curr. Pharmacol Rep. 2020;6:203–11. https://doi.org/10.1007/s40495-020-00231-8.

Article  CAS  Google Scholar 

Samaee H, Mohsenzadegan M, Ala S, Maroufi SS, Moradimajd P. Tocilizumab for treatment patients with COVID-19: recommended medication for novel disease. Int Immunopharmacol. 2020;89:107018 https://doi.org/10.1016/j.intimp.2020.107018.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahebnasagh A, Nabavi SM, Kashani HRK, Aghaabdollahian S, Habtemariam S, Rezabakhsh A. Anti-VEGF agents: as appealing targets in the setting of COVID-19 treatment in critically ill patients. Int Immunopharmacol. 2021;101:108257 https://doi.org/10.1016/j.intimp.2021.108257.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaur U, Chakrabarti SS, Ojha B, Pathak BK, Singh A, Saso L, Chakrabarti S. Targeting host cell proteases to prevent SARS-CoV-2 invasion. Curr Drug Targets. 2021;22:192–201. https://doi.org/10.2174/1389450121666200924113243.

Article  CAS  PubMed  Google Scholar 

Su HX, Yao S, Zhao WF, Li MJ, Liu J, Shang WJ, Xie H, Ke CQ, Hu HC, Gao MN, Yu KQ. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol Sin. 2020;41:1167–77. https://doi.org/10.1038/s41401-020-0483-6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li J, Xu D, Wang L, Zhang M, Zhang G, Li E, He S. Glycyrrhizic acid inhibits SARS-CoV-2 infection by blocking spike protein-mediated cell attachment. Molecules. 2021;26:6090 https://doi.org/10.3390/molecules26206090.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan AM, Farooq S, Ullah A, Choudhary MI. Repurposing of US-FDA-approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies, and antiviral assays. Int J Biol Macromol. 2023;234:123540 https://doi.org/10.1016/j.ijbiomac.2023.123540.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai W, Bi J, Li F. Anti-viral efficacy of flavonoids against enterovirus 71 infection in vitro and newborn mice. Viruses. 2019;11:625 https://doi.org/10.3390/v11070625.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho J, Lee YJ, Kim JH, Kim SI, Kim SS, Byeong S, Jang H. Anti-viral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci Rep. 2020;10:16200 https://doi.org/10.1038/s41598-020-72879-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koch-Heier J, Hoffmann H, Schindler M, Lussi A, Planz O. Inactivation of SARS-CoV-2 through treatment with the mouth rinsing solutions ViruProX® and BacterX® Pro. Microorganisms. 2021;9:521 https://doi.org/10.3390/microorganisms9030521.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Helfand SL, Werkmeister J, Roder JC. Chemiluminescence response of human natural killer cells, The relationship between target cell binding, chemiluminescence, and cytolysis. J Exp Med. 1982;156:492–505. https://doi.org/10.1084/jem.156.2.492.

Article  CAS  PubMed  Google Scholar 

Andrade MA, Siles-Lucas M, Arellano JLP, Barreto CP, Valladares B, Espinoza E, Muro A. Increased rat alveolar macrophage expression of functional iNOS induced by a Dirofilaria immitis immunoglobulin superfamily protein. Nitric Oxide. 2005;13:217–25. https://doi.org/10.1016/j.niox.2005.06.003.

Article  CAS  PubMed  Google Scholar 

Javed S, Jabeen A, Zhumagaliyeva S, Abilov ZA, Choudhary MI. Fungal mediated biotransformation of melengestrol acetate, and T-cell proliferation inhibitory activity of biotransformed compounds. Bioorg Chem. 2020;104:104313 https://doi.org/10.1016/j.bioorg.2020.104313.

Article  CAS  PubMed  Google Scholar 

Wu J, Lingrel JB. Krüppel-like factor 2, a novel immediate-early transcriptional factor, regulates IL-2 expression in T lymphocyte activation. J Immunol. 2005;175:3060–6. https://doi.org/10.4049/jimmunol.175.5.3060.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif