A novel class of indole derivatives: enhanced bioavailability, permeability, and antioxidant efficacy for thromboembolic disease therapy

Jourdi G, Lordkipanidze M, Philippe A, Bachelot-Loza C, Gaussem P. Current and novel antiplatelet therapies for the treatment of cardiovascular diseases. Int J Mol Sci. 2021;22. https://doi.org/10.3390/ijms222313079.

Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv. 2021;11:33540–612. https://doi.org/10.1039/d1ra05972f

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal perspective of indole derivatives: recent developments and structure-activity relationship studies. Curr Drug Targets. 2020;21:864–91. https://doi.org/10.2174/1389450121666200310115327

Article  CAS  PubMed  Google Scholar 

Kumari A, Singh RK. Medicinal chemistry of indole derivatives: current to future therapeutic prospectives. Bioorg Chem. 2019;89:103021. https://doi.org/10.1016/j.bioorg.2019.103021

Article  CAS  PubMed  Google Scholar 

Chen YH, Riby J, Srivastava P, Bartholomew J, Denison M, Bjeldanes L. Regulation of CYP1A1 by indolo[3,2-b]carbazole in murine hepatoma cells. J Biol Chem. 1995;270:22548–55. https://doi.org/10.1074/jbc.270.38.22548

Article  CAS  PubMed  Google Scholar 

Matsunaga T, Morikawa Y, Kamase K, Horinouchi M, Sasajima Y, Suenami K, et al. Enhancement of endothelial barrier permeability by mitragynine. Biol Pharm Bull. 2017;40:1779–83. https://doi.org/10.1248/bpb.b17-00117

Article  CAS  PubMed  Google Scholar 

Watanabe K, Nishimura Y, Nomoto T, Umemoto N, Zhang Z, Zhang B, et al. In vivo assessment of the permeability of the blood-brain barrier and blood-retinal barrier to fluorescent indoline derivatives in zebrafish. BMC Neurosci. 2012;13:101. https://doi.org/10.1186/1471-2202-13-101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bi W, Bi L, Cai J, Liu S, Peng S, Fischer NO, et al. Dual-acting agents that possess free radical scavenging and antithrombotic activities: design, synthesis, and evaluation of phenolic tetrahydro-beta-carboline RGD peptide conjugates. Bioorg Med Chem Lett. 2006;16:4523–7. https://doi.org/10.1016/j.bmcl.2006.06.024

Article  CAS  PubMed  Google Scholar 

Bi W, Bi Y, Xue P, Zhang Y, Gao X, Wang Z, et al. A new class of beta-carboline alkaloid-peptide conjugates with therapeutic efficacy in acute limb ischemia/reperfusion injury. Eur J Med Chem. 2011;46:1453–62. https://doi.org/10.1016/j.ejmech.2011.01.021

Article  CAS  PubMed  Google Scholar 

Bi W, Bi Y, Xue P, Zhang Y, Gao X, Wang Z, et al. Novel beta-carboline-tripeptide conjugates attenuate mesenteric ischemia/reperfusion injury in the rat. Eur J Med Chem. 2011;46:2441–52. https://doi.org/10.1016/j.ejmech.2011.03.029

Article  CAS  PubMed  Google Scholar 

Bi W, Cai J, Liu S, Baudy-Floc’h M, Bi L. Design, synthesis and cardioprotective effect of a new class of dual-acting agents: phenolic tetrahydro-beta-carboline RGD peptidomimetic conjugates. Bioorg Med Chem. 2007;15:6909–19. https://doi.org/10.1016/j.bmc.2007.08.022

Article  CAS  PubMed  Google Scholar 

Ramakrishna K, Singh N, Krishnamurthy S. Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. Eur J Pharmacol. 2022;919:174812. https://doi.org/10.1016/j.ejphar.2022.174812

Article  CAS  PubMed  Google Scholar 

Zhao M, Bi L, Bi W, Wang C, Yang Z, Ju J, et al. Synthesis of new class dipeptide analogues with improved permeability and antithrombotic activity. Bioorg Med Chem. 2006;14:4761–74. https://doi.org/10.1016/j.bmc.2006.03.026

Article  CAS  PubMed  Google Scholar 

Bi W, Bi Y, Li P, Hou S, Yan X, Hensley C, et al. Indole alkaloid derivative B, a novel bifunctional agent that mitigates 5-fluorouracil-induced cardiotoxicity. ACS Omega. 2018;3:15850–64. https://doi.org/10.1021/acsomega.8b02139

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu Q, Luo Y, Li Z, Chen C, Fang L. Structural modifications on indole and pyrimidine rings of osimertinib lead to high selectivity towards L858R/T790M double mutant enzyme and potent antitumor activity. Bioorg Med Chem. 2021;36:116094. https://doi.org/10.1016/j.bmc.2021.116094

Article  CAS  PubMed  Google Scholar 

Bi W, Bi Y, Gao X, Li P, Hou S, Zhang Y, et al. Indole-TEMPO conjugates alleviate ischemia-reperfusion injury via attenuation of oxidative stress and preservation of mitochondrial function. Bioorg Med Chem. 2017;25:2545–68. https://doi.org/10.1016/j.bmc.2017.03.033

Article  CAS  PubMed  Google Scholar 

Folkes LK, Greco O, Dachs GU, Stratford MR, Wardman P. 5-Fluoroindole-3-acetic acid: a prodrug activated by a peroxidase with potential for use in targeted cancer therapy. Biochem Pharmacol. 2002;63:265–72. https://doi.org/10.1016/s0006-2952(01)00868-1

Article  CAS  PubMed  Google Scholar 

Kovacikova L, Prnova MS, Majekova M, Bohac A, Karasu C, Stefek M. Development of novel indole-based bifunctional aldose reductase inhibitors/antioxidants as promising drugs for the treatment of diabetic complications. Molecules. 2021;26. https://doi.org/10.3390/molecules26102867.

Rossiter S, Folkes LK, Wardman P. Halogenated indole-3-acetic acids as oxidatively activated prodrugs with potential for targeted cancer therapy. Bioorg Med Chem Lett. 2002;12:2523–6. https://doi.org/10.1016/s0960-894x(02)00505-x

Article  CAS  PubMed  Google Scholar 

Wardman P. Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy. Curr Pharm Des. 2002;8:1363–74. https://doi.org/10.2174/1381612023394610

Article  CAS  PubMed  Google Scholar 

Dong H, Guo M, Liang Y, Fan C, Ding G, Zhang W, et al. Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. Mater Sci Eng C Mater Biol Appl. 2018;89:175–81. https://doi.org/10.1016/j.msec.2018.04.004

Article  CAS  PubMed  Google Scholar 

Hegazy HA, Abo-ElMatty DM, Farid O, Saleh S, Ghattas MH, Omar NN. Nano-melatonin and-histidine modulate adipokines and neurotransmitters to improve cognition in HFD-fed rats: a formula to study. Biochimie. 2023;207:137–52. https://doi.org/10.1016/j.biochi.2022.11.002

Article  CAS  PubMed  Google Scholar 

Bozorov K, Zhao J, Aisa HA. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg Med Chem. 2019;27:3511–31. https://doi.org/10.1016/j.bmc.2019.07.005

Article  CAS  PubMed  PubMed Central  Google Scholar 

Staskiewicz A, Ledwon P, Rovero P, Papini AM, Latajka R. Triazole-modified peptidomimetics: an opportunity for drug discovery and development. Front Chem. 2021;9:674705. https://doi.org/10.3389/fchem.2021.674705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cohen O, Ageno W, Farjat AE, Turpie AGG, Weitz JI, Haas S, et al. Management strategies and clinical outcomes in patients with inferior vena cava thrombosis: data from GARFIELD-VTE. J Thromb Haemost. 2022;20:366–74. https://doi.org/10.1111/jth.15574

Article  PubMed  Google Scholar 

Weitz JI, Eikelboom JW, Samama MM. New antithrombotic drugs: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141:e120S–51S. https://doi.org/10.1378/chest.11-2294.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee W, Lee J, Kulkarni R, Kim MA, Hwang JS, Na M, et al. Antithrombotic and antiplatelet activities of small-molecule alkaloids from Scolopendra subspinipes mutilans. Sci Rep. 2016;6:21956 https://doi.org/10.1038/srep21956

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulimov VB, Gribkova IV, Kochugaeva MP, Katkova EV, Sulimov AV, Kutov DC, et al. Application of molecular modeling to development of new factor Xa inhibitors. Biomed Res Int. 2015;2015:120802. https://doi.org/10.1155/2015/120802

留言 (0)

沒有登入
gif