Wykoff CC, Khurana RN, Nguyen QD et al (2021) Risk of blindness among patients with diabetes and newly diagnosed diabetic retinopathy. Diabetes Care 44(3):748–756. https://doi.org/10.2337/dc20-0413
Article PubMed PubMed Central Google Scholar
Pe’er J, Shweiki D, Itin A, Hemo I, Gnessin H, Keshet E (1995) Hypoxia-induced expression of vascular endothelial growth factor by retinal cells is a common factor in neovascularizing ocular diseases. Lab Invest 72(6):638–645
Ebihara S, Machida S, Hara Y et al (2021) Relationships between the vascular structure and neural function of the macula in patients with diabetes mellitus. Jpn J Ophthalmol 65(1):77–88. https://doi.org/10.1007/s10384-020-00784-7
Chen JT, Chen LJ, Chen SN et al (2020) Management of diabetic macular edema: experts’ consensus in Taiwan. Jpn J Ophthalmol 64(3):235–242. https://doi.org/10.1007/s10384-020-00741-4
Das A, McGuire PG, Rangasamy S (2015) Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology 122(7):1375–1394. https://doi.org/10.1016/j.ophtha.2015.03.024
Bressler SB, Ayala AR, Bressler NM et al (2016) Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol 134(3):278–285. https://doi.org/10.1001/jamaophthalmol.2015.5346
Article PubMed PubMed Central Google Scholar
Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123(11):2368–2375. https://doi.org/10.1016/j.ophtha.2016.07.010
Nakao S, Arima M, Ishikawa K et al (2012) Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis. Invest Ophthalmol Vis Sci 53(7):4323–4328. https://doi.org/10.1167/iovs.11-9119
Article CAS PubMed Google Scholar
Sorour OA, Sabrosa AS, YasinAlibhai A et al (2019) Optical coherence tomography angiography analysis of macular vessel density before and after anti-VEGF therapy in eyes with diabetic retinopathy. Int Ophthalmol 39(10):2361–2371. https://doi.org/10.1007/s10792-019-01076-x
Wykoff CC, Nittala MG, Villanueva Boone C et al (2022) Final outcomes from the randomized RECOVERY trial of aflibercept for retinal nonperfusion in proliferative diabetic retinopathy. Ophthalmol Retina 6(7):557–566. https://doi.org/10.1016/j.oret.2022.02.013
Cheung CMG, Fawzi A, Teo KY et al (2022) Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res 89:101033. https://doi.org/10.1016/j.preteyeres.2021.101033
Article CAS PubMed Google Scholar
Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364(7):656–665. https://doi.org/10.1056/NEJMra0910283
Article CAS PubMed PubMed Central Google Scholar
Yoshida S, Kobayashi Y, Nakao S et al (2017) Differential association of elevated inflammatory cytokines with postoperative fibrous proliferation and neovascularization after unsuccessful vitrectomy in eyes with proliferative diabetic retinopathy. Clin Ophthalmol 11:1697–1705. https://doi.org/10.2147/OPTH.S141821
Article CAS PubMed PubMed Central Google Scholar
Yoshimura T, Sonoda KH, Sugahara M et al (2009) Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS One 4(12):e8158. https://doi.org/10.1371/journal.pone.0008158
Article CAS PubMed PubMed Central Google Scholar
Bolz M, Schmidt-Erfurth U, Deak G et al (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116(5):914–920. https://doi.org/10.1016/j.ophtha.2008.12.039
Yamaguchi M, Nakao S, Wada I et al (2022) Identifying hyperreflective foci in diabetic retinopathy via VEGF-induced local self-renewal of CX3CR1+ vitreous resident macrophages. Diabetes 71(12):2685–2701. https://doi.org/10.2337/db21-0247
Article CAS PubMed Google Scholar
Vujosevic S, Bini S, Torresin T et al (2017) Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation. Retina 37(6):1092–1103. https://doi.org/10.1097/IAE.0000000000001304
Chen KC, Jung JJ, Curcio CA et al (2016) Intraretinal hyperreflective foci in acquired vitelliform lesions of the macula: clinical and histologic study. Am J Ophthalmol 164:89–98. https://doi.org/10.1016/j.ajo.2016.02.002
Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB (2017) Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. Invest Ophthalmol Vis Sci 58(6):BIO211–BIO226. https://doi.org/10.1167/iovs.17-21872
Article PubMed PubMed Central Google Scholar
Miura M, Makita S, Sugiyama S et al (2017) Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration using polarimetric imaging. Sci Rep 7(1):3150. https://doi.org/10.1038/s41598-017-03529-8
Article CAS PubMed PubMed Central Google Scholar
Hume DA, Ross IL, Himes SR, Sasmono RT, Wells CA, Ravasi T (2002) The mononuclear phagocyte system revisited. J Leukoc Biol 72(4):621–627. https://doi.org/10.1189/jlb.72.4.621
Article CAS PubMed Google Scholar
Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD (2007) Turnover of resident retinal microglia in the normal adult mouse. Glia 55(11):1189–1198. https://doi.org/10.1002/glia.20535
Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44(3):450–462. https://doi.org/10.1016/j.immuni.2016.02.015
Article CAS PubMed PubMed Central Google Scholar
Hu X, Li P, Guo Y et al (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43(11):3063–3070. https://doi.org/10.1161/STROKEAHA.112.659656
Article CAS PubMed Google Scholar
Esser P, Heimann K, Wiedemann P (1993) Macrophages in proliferative vitreoretinopathy and proliferative diabetic retinopathy: differentiation of subpopulations. Br J Ophthalmol 77(11):731–733. https://doi.org/10.1136/bjo.77.11.731
Article CAS PubMed PubMed Central Google Scholar
Kubota Y, Takubo K, Shimizu T et al (2009) M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med 206(5):1089–1102. https://doi.org/10.1084/jem.20081605
Article CAS PubMed PubMed Central Google Scholar
Rakoczy EP, Ali Rahman IS, Binz N et al (2010) Characterization of a mouse model of hyperglycemia and retinal neovascularization. Am J Pathol 177(5):2659–2670. https://doi.org/10.2353/ajpath.2010.090883
Article PubMed PubMed Central Google Scholar
Connor KM, Krah NM, Dennison RJ et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573. https://doi.org/10.1038/nprot.2009.187
留言 (0)