Patel NA, et al. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Neurospine. 2023;20(2):451–63.
Article PubMed PubMed Central Google Scholar
Kobayashi K, et al. Epidemiological trends in spine surgery over 10 years in a multicenter database. Eur Spine J. 2018;27(8):1698–703.
Ragab A, Deshazo RD. Management of back pain in patients with previous back surgery. Am J Med. 2008;121(4):272–8.
Martin BI, et al. Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures. Spine (Phila Pa 1976). 2007;32(3):382–7.
Weiner DK, et al. Low back pain in older adults: are we utilizing healthcare resources wisely? Pain Med. 2006;7(2):143–50.
McGirt MJ, et al. Lumbar Surgery in the Elderly Provides Significant Health Benefit in the US Health Care System: Patient-Reported Outcomes in 4370 Patients From the N2QOD Registry. Neurosurgery. 2015;77(Suppl 4):S125–35.
Parker SL, et al. Minimally invasive versus open transforaminal lumbar interbody fusion for degenerative spondylolisthesis: comparative effectiveness and cost-utility analysis. World Neurosurg. 2014;82(1–2):230–8.
Hodgson AR, Stock FE. Anterior Spine Fusion for the Treatment of Tuberculosis of the Spine: The Operative Findings and Results of Treatment in the First One Hundred Cases. JBJS. 1960;42(2):295–310.
O’Brien JP, et al. Simultaneous combined anterior and posterior fusion. A surgical solution for failed spinal surgery with a brief review of the first 150 patients. Clin Orthop Relat Res. 1986;203:191–5.
Kuslich SD, et al. The Bagby and Kuslich Method of Lumbar Interbody Fusion: History, Techniques, and 2-Year Follow-up Results of a United States Prospective. Multicenter Trial Spine. 1998;23(11):1267–78.
Steffen T, Tsantrizos A, Aebi M. Effect of implant design and endplate preparation on the compressive strength of interbody fusion constructs. Spine (Phila Pa 1976). 2000;25(9):1077–84.
Article CAS PubMed Google Scholar
Spruit M, et al. Posterior reduction and anterior lumbar interbody fusion in symptomatic low-grade adult isthmic spondylolisthesis: short-term radiological and functional outcome. Eur Spine J. 2002;11(5):428–33.
Article CAS PubMed PubMed Central Google Scholar
Phan K, Mobbs RJ. Evolution of Design of Interbody Cages for Anterior Lumbar Interbody Fusion. Orthop Surg. 2016;8(3):270–7.
Article PubMed PubMed Central Google Scholar
Müller U, et al. Do human osteoblasts grow into open-porous titanium? Eur Cell Mater. 2006;11:8–15.
Olivares-Navarrete R, et al. Rough titanium alloys regulate osteoblast production of angiogenic factors. Spine J. 2013;13(11):1563–70.
Sul YT, et al. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants. 2005;20(3):349–59.
Textor M, et al. Properties and Biological Significance of Natural Oxide Films on Titanium and Its Alloys. Berlin Heidelberg: Springer; 2001. p. 171–230.
Litak J, Szymoniuk M, Czyżewski W, Hoffman Z, Litak J, Sakwa L, Kamieniak P. Metallic Implants Used in Lumbar Interbody Fusion. Materials (Basel). 2022;15(10):3650. https://doi.org/10.3390/ma15103650.
Zhu Y, et al. “Effect of Elastic Modulus on Biomechanical Properties of Lumbar Interbody Fusion Cage.” J Mater Sci Technol. 2009;25:325–8.
D’Urso PS, et al. Spinal biomodeling. Spine (Phila Pa 1976). 1999;24(12):1247–51.
Article CAS PubMed Google Scholar
Popov VV Jr, et al. Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases. Biomed Eng Lett. 2018;8(4):337–44.
Article PubMed PubMed Central Google Scholar
Zhang L, et al. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16–33.
Article CAS PubMed Google Scholar
Awad A, et al. 3D printing: Principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594.
Article CAS PubMed Google Scholar
Witowski J, et al. From ideas to long-term studies: 3D printing clinical trials review. Int J Comput Assist Radiol Surg. 2018;13(9):1473–8.
Article PubMed PubMed Central Google Scholar
Van Norman GA. Expanded Patient Access to Investigational New Devices: Review of Emergency and Nonemergency Expanded Use, Custom, and 3D-Printed Devices. JACC Basic Transl Sci. 2018;3(4):533–44.
Article PubMed PubMed Central Google Scholar
FDA, Technical Considerations for Additive Manufactured Medical Devices; Guidance for Industry and Food and Drug Administration Staff. Federal Information & News Dispatch, 2017: 57462.
Kermavnar T, et al. Three-Dimensional Printing of Medical Devices Used Directly to Treat Patients: A Systematic Review. 3D Print Addit Manuf. 2021;8(6):366–408.
Article PubMed PubMed Central Google Scholar
Yang, L., S. Bhaduri, and T.J. Webster, Biomaterials in translational medicine. 2018: Academic Press.
Cheng BC, et al. A comparative study of three biomaterials in an ovine bone defect model. Spine J. 2020;20(3):457–64.
Wixted CM, et al. Three-dimensional Printing in Orthopaedic Surgery: Current Applications and Future Developments. J Am Acad Orthop Surg Glob Res Rev. 2021;5(4):e20.00230-11.
PubMed PubMed Central Google Scholar
Sheng X, Wang A, Wang Z, Liu H, Wang J, Li C. Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization. Front Bioeng Biotechnol. 2022;10:850110. https://doi.org/10.3389/fbioe.2022.850110.
Park S, Han U, Choi D, et al. Layer-by-layer assembled polymeric thin films as prospective drug delivery carriers: design and applications. Biomater Res 2018;22(1):29. https://doi.org/10.1186/s40824-018-0139-5.
Minagar S, et al. Cell response of anodized nanotubes on titanium and titanium alloys. J Biomed Mater Res A. 2013;101(9):2726–39.
Boccaccini AR, et al. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7(Suppl 5(Suppl 5)):S581-613.
CAS PubMed PubMed Central Google Scholar
Shalom H, Feldman Y, Rosentsveig R, Pinkas I, Kaplan-Ashiri I, Moshkovich A, Perfilyev V, Rapoport L, Tenne R. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles. Int J Mol Sci. 2018;19(3):657. https://doi.org/10.3390/ijms19030657.
Dulski M, Balcerzak J, Simka W, Dudek K. Innovative Bioactive Ag-SiO2/TiO2 Coating on a NiTi Shape Memory Alloy: Structure and Mechanism of Its Formation. Mater. 2021;14(1):99. https://doi.org/10.3390/ma14010099.
Kurella A, Dahotre NB. Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl. 2005;20(1):5–50.
Shin T, et al. A laser-aided direct metal tooling technology for artificial joint surface coating. Int J Precis Eng Manuf. 2017;18(2):233–8.
Kumar N, et al. Design and 3D printing of novel titanium spine rods with lower flexural modulus and stiffness profile with optimised imaging compatibility. Eur Spine J. 2023;32(6):1953–65.
Amelot A, Colman M, Loret J-E. Vertebral body replacement using patient-specific three–dimensional-printed polymer implants in cervical spondylotic myelopathy: an encouraging preliminary report. The Spine Journal. 2018;18(5):892–9.
De Beer N, Bloem N. An economic cost model for patient-specific intervertebral disc implants. Presented at the ISEM 2011 Proceedings, September 21-23, Stellenbosch University, Stellenbosch, South Africa; 2011. http://hdl.handle.net/10019.1/39628.
Spetzger U, Frasca M, König SA. Surgical planning, manufacturing and implantation of an individualized cervical fusion titanium cage using patient-specific data. Eur Spine J. 2016;25(7):2239–46.
留言 (0)