Characterization of MgO and Al2O3 based Refractory waste as partial replacement for Fly ash based Geopolymer

P. A. Khan, Satirenjit Kaur Johl Pritam Singh, Shireenjit Kaur Johl, Amjad Shamim, Yadi Nurhayadi, N. Wijiharjono, and Ummu S. Al-Azizah, Injecting Green Innovation Reporting into Sustainability Reporting. SHS Web of Conferences, 124, 05003 (2021); https://doi.org/10.1051/shsconf/202112405003.

J. Davidovits, Geopolymers: Ceramic-Like Inorganic Polymers. The Journal of Ceramic Science and Technology, 8(3), 335 (2017). https://doi.org/10.4416/JCST2017-00038.

M. A. Al-Ghouti, Yahya S. Al-Degs, Ayoup Ghrair, Mahmoud Ziedan, Hani Khoury, Jafar I. Abdelghani, Majeda Khraisheh. Development of industrially viable geopolymers from treated petroleum fly ash. Journal of Cleaner Production 280(2), 124808 (2021); https://doi.org/10.1016/j.jclepro.2020.124808.

S. Al-Shmaisani, Ryan D. Kalina, Raissa Douglas Ferron, and Maria C. G. Juenger. Evaluation of Beneficiated and Reclaimed Fly Ashes in Concrete. ACI Materials Journal, 116(4), 79 (2019); https://doi.org/10.14359/51716713.

Bakri, A. M. Mustafa Al; Liyana, J.; Kamarudin, H.; Bnhussain, M.; Ruzaidi, C. M.; Rafiza, A. R.; Izzat, A. M. Study on Refractory Materials Application Using Geopolymer Processing. Advanced Science Letters, 19(1), 221-223 (2013); https://doi.org/10.1166/asl.2013.4676.

J. Temuujin, Amgalan Minjigmaa, William Rickard, Melissa Lee, Iestyn Williams, Arie van Riessen, Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation. Journal of Hazardous Materials. 180, 1-3, 748 (2010); https://doi.org/10.1016/j.jhazmat.2010.04.121.

K. D. Poolman, Deon Kruger. Applications of Geopolymers in Concrete for Low-Level Radioactive Waste Containers. International Congress on Polymers in Concrete, 577 (2018); https://doi.org/10.1007/978-3-319-78175-4_74.

C. Arenas, Y. Luna-Galiano, C. Leiva, L.F. Vilches, F. Arroyo, R. Villegas, C. Fernández-Pereira. Development of a fly ash-based geopolymeric concrete with construction and demolition wastes as aggregates in acoustic barriers. Construction and Building Materials, 134(1), 433 (2017); https://doi.org/10.1016/j.conbuildmat.2016.12.119.

R.M. Kalombe, V.T. Ojumu, C.P. Eze, S.M. Nyale, J. Kevern, & L.F. Petrik, Fly Ash-Based Geopolymer Building Materials for Green and Sustainable Development. Materials (Basel, Switzerland), 13(24), 5699 (2020); https://doi.org/10.3390/ma13245699.

M. Amran, R. Fediuk, G. Murali, S. Avudaiappan, T. Ozbakkaloglu, N. Vatin, M. Karelina, S. Klyuev, A. Gholampour, Fly Ash-Based Eco-Efficient Concretes: A Comprehensive Review of the Short-Term Properties. Materials, 14, 4264 (2021); https://doi.org/10.3390/ma14154264.

J. Ma, D. Wang, S. Zhao, P. Duan, S. Yang, Influence of Particle Morphology of Ground Fly Ash on the Fluidity and Strength of Cement Paste. Materials, 14(2), 283 (2021); https://doi.org/10.3390/ma14020283.

N.H. Thang, B.K. Thach, D.Q. Minh, Influence of Curing Regimes on Engineering and Microstructural Properties of Geopolymer-Based Materials from Water Treatment Residue and Fly Ash. International Journal of Technology, 12(4), 700 (2021); https://doi.org/10.14716/ijtech.v12i4.4626.

ASTM C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International (2002).

E. Yener, Cemal Karaaslan. Curing Time and Temperature Effect on the Resistance to Wet-Dry Cycles of Fly Ash Added Pumice Based Geopolymer. Cement Based Composites, 2, 19 (2020); https://doi.org/10.36937/cebacom.2020.002.004.

B. Mo, He Zhu, Xue-min Cui, Yan He, Si-yu Gong. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Applied Clay Science, 99, 144 (2014); https://doi.org/10.1016/j.clay.2014.06.024.

Z. Li, W. Zhang, R. Wang, F. Chen, X. Jia, P. Cong, Effects of Reactive MgO on the Reaction Process of Geopolymer. Materials, 12, 526 (2019); https://doi.org/10.3390/ma12030526.

H.A. Abdel-Gawwad. Effect of Reactive Magnesium Oxide on Properties Of Alkali Activated Slag Slag Geopolymer Cement Pastes, Ceramics-Silikaty, 59(1), 37 (2015);

H.A. Abdel-Gawwad. Effect of Reactive Magnesium Oxide on Properties of Alkali Activated Slag Geopolymer Cement Pastes. The 2014 World Congress on Advances in Civil, Environmental, and Materials Research (2014).

M. B. Ramli, Alonge O. Richard, Charaterization of Metakaolin and Study on Early Age Mechanical Strength of Hybrid Cementitious Composite. Construction and Building Materials, 599 (2016); https://doi.org/10.1016/j.conbuildmat.2016.06.039.

P. Dinakar, Pradosh K, Sahoo, Effect of Metakaolin Content on The Properties of High Strength Concrete. Journal of Concrete Structures and Materials, 7(3), 215 (2013).

H. Castillo, H. Collado, T. Droguett, S. Sánchez, M. Vesely, P. Garrido, S. Palma, Factors Affecting the Compressive Strength of Geopolymers: A Review, Minerals, 11, 1317 (2021); https://doi.org/10.3390/min11121317.

A. Harmaji, B. Sunendar. Utilization of Fly Ash, Red Mud, and Electric Arc Furnace Dust Slag for Geopolymer. Materials Science Forum. Trans Tech Publications, Ltd., 157 (2016); https://doi.org/10.4028/www.scientific.net/msf.841.157.

A. Harmaji, Claudia Claudia, Lia Asri, Bambang Sunendar, Ahmad Nuruddin. Pengaruh waktu curing terhadap kuat tekan geopolimer berbasis fly ash. ensains Journal, 2(1), 50 (2019); https://doi.org/10.31848/ensains.v2i1.152.

P.H. Simatupang, Iswandi Imran, Ivindra Pane, Bambang Sunendar. On the Development of a Nomogram for Alkali Activated Fly Ash Material (AAFAM) Mixtures, Journal of Engineering and Technological Sciences, 47(3), 231 (2015); https://doi.org/10.5614/j.eng.technol.sci.2015.47.3.1.

留言 (0)

沒有登入
gif