Analysis of the Structural, Morphological, and Elastic Properties of Nanosized CuFe2O4 Spinel Synthesized via Sol-Gel Self-Combustion Method

H. K. Dubey, & P. Lahiri. Synthesis, structural, dielectric and magnetic properties of Cd2+ based Mn nanosized ferrites, Materials Technology (UK), 131–144, 36(3), (2021); https://doi.org/10.1080/10667857.2020.1734728.

E. E. Ateia, M. K. Abdelmaksoud, M. M. Arman, & A. S. Shafaay. Comparative study on the physical properties of rare-earth-substituted nano-sized CoFe2O4. Applied Physics. A, Materials Science & Processing, 126(2), (2020); https://doi.org/10.1007/s00339-020-3282-5.

S. A. Mazen, H. M. Elsayed, & N. I. Abu-Elsaad. A comparative study of different concentrations of (Co/Ni/Cu) effects on elastic properties of Li–Mn ferrite employing IR spectroscopy and ultrasonic measurement. Ceramics International, 26635–26642, 47(19), (2021); https://doi.org/10.1016/j.ceramint.2021.06.071.

J. B. Shitole, S. N. Keshatti, S. M. Rathod, & S. S. Jadhav. Y3+ composition and particle size influenced magnetic and dielectric properties of nanocrystalline Ni0.5Cu0.5YxFe2-xO4 ferrites. Ceramics International, 17993–18002, 47(13), (2021); https://doi.org/10.1016/j.ceramint.2021.03.114.

J. Mazurenko, L. Kaykan, A. K. Sijo, M. Moiseienko, M. Kuzyshyn, N. Ostapovych, & M. Moklyak. The influence of reaction medium pH on the structure, optical, and mechanical properties of nanosized Cu-Fe ferrite synthesized by the sol-gel autocombustion method. Journal of Nano Research, 65–84, 81, (2023); https://doi.org/10.4028/p-d2fqah.

T. Dippong, D. Toloman, M. Dan, E. A. Levei, & O. Cadar. Structural, morphological and photocatalytic properties of Ni-Mn ferrites: Influence of the Ni:Mn ratio. Journal of Alloys and Compounds, 913, 165129, (2022); https://doi.org/10.1016/j.jallcom.2022.165129.

R. Singh Yadav, I. Kuřitka, J. Vilcakova, T. Jamatia, M. Machovsky, D. Skoda, P. Urbánek, M. Masař, M. Urbánek, L. Kalina, & J. Havlica. Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. Ultrasonics Sonochemistry, 61, 104839, (2020); https://doi.org/10.1016/j.ultsonch.2019.104839.

R. Zapukhlyak, M. Hodlevsky, V. Boychuk, J. Mazurenko, V. Kotsyubynsky, L. Turovska, B. Rachiy, & S. Fedorchenko. Structure and magnetic properties of hydrothermally synthesized CuFe2O4 and CuFe2O4/rGO composites. Journal of Magnetism and Magnetic Materials, 587 171208 (2023); https://doi.org/10.1016/j.jmmm.2023.171208.

R. Qindeel N. H. Alonizan E. A. Alghamdi & M. A. Awad. Synthesis and characterization of spinel ferrites for microwave devices. Journal of Sol-Gel Science and Technology, 593–599, 97(3), (2021); https://doi.org/10.1007/s10971-021-05470-9.

Y. J. Xu, S. Y. Song, C. X. Li, B. Hong, & X. Q. Wang. Magnetic behavior, photocatalytic activity and gas-sensing performance of porous lanthanum ferrites powders. Materials Chemistry and Physics, 267, 124628, (2021); https://doi.org/10.1016/j.matchemphys.2021.124628.

M. J. Sadiq Mohamed, S. Caliskan, M. A. Gondal, M. A. Almessiere, A. Baykal, & A. Roy. Se-doped magnetic co–Ni spinel ferrite nanoparticles as electrochemical catalysts for hydrogen evolution. ACS Applied Nano Materials, 7330–7341, 6(9), (2023); https://doi.org/10.1021/acsanm.3c00464.

N. K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K. S. Kim, & M. Saifuddin. Photocatalytic degradation of organic pollutants over MFe2O4 (M = Co, Ni, Cu, Zn) nanoparticles at neutral pH. Scientific Reports, 10(1), (2020); https://doi.org/10.1038/s41598-020-61930-2.

B. Shi, Y. Wang, I. Ahmed, & B. Zhang. Catalytic degradation of refractory phenol sulfonic acid by facile, calcination-free cobalt ferrite nanoparticles. Journal of Environmental Chemical Engineering, 107616, 10(3), (2022); https://doi.org/10.1016/j.jece.2022.107616.

A. Becker, K. Kirchberg, & R. Marschall. Magnesium ferrite (MgFe2O4) nanoparticles for photocatalytic antibiotics degradation. Zeitschrift Für Physikalische Chemie (Frankfurt Am Main, Germany), 645–654, 234(4), (2020); https://doi.org/10.1515/zpch-2019-1430.

K. K. Kefeni, T. A. M. Msagati, T. T. I. Nkambule, & B. B. Mamba. Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Materials Science & Engineering. C, Materials for Biological Applications, 110314, 107, (2020); https://doi.org/10.1016/j.msec.2019.110314.

J. Muhamad Arshad, W. Raza, N. Amin, K. Nadeem, M. Imran Arshad, & M. Azhar Khan. Synthesis and characterization of cobalt ferrites as MRI contrast agent. Materials Today: Proceedings, S50–S54, 47, (2021); https://doi.org/10.1016/j.matpr.2020.04.746 .

M. I. A. Abdel Maksoud, M. M. Ghobashy, A. S. Kodous, & A. H. Ashour. Insights on magnetic spinel ferrites for targeted drug delivery and hyperthermia applications. Nanotechnology Reviews, 372–413, 11(1), (2022); https://doi.org/10.1515/ntrev-2022-0027.

G. Nandhini, & M. K. Shobana. Role of ferrite nanoparticles in hyperthermia applications. Journal of Magnetism and Magnetic Materials, 552, 169236, (2022); https://doi.org/10.1016/j.jmmm.2022.169236.

D. O. Morais, A. Pancotti, G. S. de Souza, & J. Wang. Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles. Journal of Materials Science. Materials in Medicine, 32(9), (2021); https://doi.org/10.1007/s10856-021-06578-8.

C. Joseph Prabagar, S. Anand, M. Asisi Janifer, S. Pauline, & P. A. S. Theoder. Effect of metal substitution (Zn, Cu and Ag) in cobalt ferrite nanocrystallites for antibacterial activities. Materials Today: Proceedings, 1999–2006, 47, (2021); https://doi.org/10.1016/j.matpr.2021.04.150.

V. K. Surashe, V. Mahale, A. P. Keche, & R. G. Dorik. Structural and electrical properties of copper ferrite (CuFe2O4) NPs. Journal of Physics. Conference Series, 1644(1), 012025, (2020); https://doi.org/10.1088/1742-6596/1644/1/012025 .

F. H. Mulud, N. A. Dahham, & I. F. Waheed. Synthesis and characterization of copper ferrite nanoparticles. IOP Conference Series. Materials Science and Engineering, 072125, 928(7), (2020); https://doi.org/10.1088/1757-899x/928/7/072125.

K. Cui, M. Sun, J. Zhang, J. Xu, & Yuan, C. Facile solid-state synthesis of tetragonal CuFe2O4 spinels with improved infrared radiation performance. Ceramics International, 10555–10561, 48(8), (2022); https://doi.org/10.1016/j.ceramint.2021.12.268.

S. Mallesh, M. Gu, & K. H. Kim. Cubic to tetragonal phase transition in CuFe₂O₄. Experimental details nanoparticles. Journal of Magnetics, 7–13, 26(1), (2021); https://doi.org/10.4283/jmag.2021.26.1.007.

R., Dhyani, R. C., Srivastava, & G. Dixit. Study of magnetic and temperature-dependent dielectric properties of Co-CuFe2O4 nanoferrites. Journal of Electronic Materials, 5492–5507, 51(10), (2022); https://doi.org/10.1007/s11664-022-09831-0.

L. Kaykan, A. Sijo, J. Mazurenko, & A. Żywczak. Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites. Applied Nanoscience, 503–511, 12(3), (2022); https://doi.org/10.1007/s13204-021-01691-0

S. K. Sen, T. C. Paul, S. Dutta, M. N. Hossain, & M. N. H. Mia. XRD peak profile and optical properties analysis of Ag-doped h-MoO3 nanorods synthesized via hydrothermal method. Journal of Materials Science: Materials in Electronics, 1768–1786, 31(2), (2020); https://doi.org/10.1007/s10854-019-02694-y.

T. Ungár. Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 777–781, 51(8), (2004); https://doi.org/10.1016/j.scriptamat.2004.05.007.

W. H. Hall. X-ray line broadening in metals. Proceedings of the Physical Society, 741–743, 62(11), (1949); https://doi.org/10.1088/0370-1298/62/11/110.

B. E. Warren, & B. L. Averbach. The separation of cold-work distortion and particle size broadening in X-ray patterns. Journal of Applied Physics, 497–497, 23(4), (1952); https://doi.org/10.1063/1.1702234.

D. Balzar, & H. Ledbetter. Voigt-function modeling in Fourier analysis of size- and strain-broadened X-ray diffraction peaks. Journal of Applied Crystallography, 97–103, 26(1), (1993); https://doi.org/10.1107/s0021889892008987.

L. Kaykan, J. Mazurenko, N. Ostapovych, A. Sijo, N. ’Ivanichok. Effect of pH on structural morphology and magnetic properties of ordered phase of cobalt doped lithium ferrite nanoparticles synthesized by sol-gel auto-combustion method. Journal of Nano- and Electronic Physics, 12(4), (2020); https://doi.org/10.21272/jnep.12(4).04008.

L. Kaykan, J. Mazurenko, I. Yaremiy, K. Bandura, N. Ostapovych. Effect of nickel ions substitution on the structural and electrical properties of a nanosized lithium-iron ferrite obtained by the sol-gel auto-combustion method. Journal of Nano- and Electronic Physics, 11(5), (2019); https://doi.org/10.21272/jnep.11(5).05041.

N. Khan, I. Irshad, B. S. Almutairi, A. Dahshan, A. Husssain, & M. Sagir. Sol-gel auto-combustion synthesis and characterization of Nd3+ doped Cu0.5Co0.5Fe2-xNdxO4 (x = 0.0, 0.1, 0.2, 0.3, 0.4, & 0.5) spinel ferrites. Ceramics International, 8594–8601, 50(6), (2024); https://doi.org/10.1016/j.ceramint.2023.08.037.

E.H. Nickel. The new mineral cuprospinel (CuFe2O4) and other spinels from an oxidized ore dump at Baie Verte, Newfoundland. Canadian Mineralogist: 11, 1003-1007, (1973).

K. Momma, & F. Izumi. VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 1272–1276, 44(6), (2011); https://doi.org/10.1107/s0021889811038970.

K. Pubby, S. S. Meena, S. M. Yusuf, & S. Bindra Narang. Cobalt substituted nickel ferrites via Pechini’s sol–gel citrate route: X-band electromagnetic characterization. Journal of Magnetism and Magnetic Materials, 430–445, 466, (2018); https://doi.org/10.1016/j.jmmm.2018.07.038.

S. B. Waje, M. Hashim, W. D. W. Yusoff, & Z. Abbas. X-ray diffraction studies on crystallite size evolution of CoFe2O4 nanoparticles prepared using mechanical alloying and sintering. Applied Surface Science, 3122–3127, 256(10), (2010); https://doi.org/10.1016/j.apsusc.2009.11.084.

R. S. Shitole, V. K. Barote, S. B. Kadam, & R. H. Kadam. Williamson-Hall strain analysis, cation distribution and magnetic interactions in Dy3+ substituted zinc-chromium ferrite. Journal of Magnetism and Magnetic Materials, 588, 171468, (2023); https://doi.org/10.1016/j.jmmm.2023.171468.

A. M. Nashaat, A. Abu El-Fadl, M. A. Kassem, & H. Nakamura. Optimizing a microwave-combustion synthesis and particle-size dependent magnetic properties of M-type Sr ferrite. Materials Chemistry and Physics, 305, 128008, (2023); https://doi.org/10.1016/j.matchemphys.2023.128008.

S. Debnath, K. Deb, B. Saha, & R. Das. X-ray diffraction analysis for the determination of elastic properties of zinc-doped manganese spinel ferrite nanocrystals (Mn0.75Zn0.25Fe2O4), along with the determination of ionic radii, bond lengths, and hopping lengths. The Journal of Physics and Chemistry of Solids, 105–114, 134, (2019); https://doi.org/10.1016/j.jpcs.2019.05.047.

S. Debnath, & R. Das. Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: Shows a correlation between them. Journal of Alloys and Compounds, 852, (2021); https://doi.org/10.1016/j.jallcom.2020.156884.

G. S. Thool, A. K. Singh, R. S. Singh, A. Gupta, & M. A. B. H. Susan. Facile synthesis of flat crystal ZnO thin films by solution growth method: A micro-structural investigation. Journal of Saudi Chemical Society, 712–721, 18(5), (2014);https://doi.org/10.1016/j.jscs.2014.02.005.

S. E. M. Ghahfarokhi, M. Ahmadi, & I. Kazeminezhad. Effects of Bi3+ substitution on structural, morphological, and magnetic properties of cobalt ferrite nanoparticles. Journal of Superconductivity and Novel Magnetism, 32(10), 3251–3263, (2019); https://doi.org/10.1007/s10948-019-5058-8.

U. Kumar, D. Padalia, P. Kumar, & P. Bhandari. Estimation of lattice strain and structural study of BaTiO3/PS polymer composite using X-ray peak profile analysis. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 25(6), (2023); https://doi.org/10.1007/s11051-023-05779-2.

K. Mabhouti, P. Norouzzadeh, & M. Taleb-Abbasi. Effects of Fe, Co, or Ni substitution for Mn on La0.7Sr0.3MnO3 perovskite: Structural, morphological, and optical analyses. Journal of Non-Crystalline Solids, 610, (2023); https://doi.org/10.1016/j.jnoncrysol.2023.122283.

Kumar S. Ravina, S. Z. Hashmi, G. Srivastava, J. Singh, A. M. Quraishi, & P. A. Alvi. Synthesis and investigations of structural, surface morphology, electrochemical, and electrical properties of NiFe2O4 nanoparticles for usage in supercapacitors. Journal of Materials Science: Materials in Electronics, 34(10), (2023); https://doi.org/10.1007/s10854-023-10312-1.

P. Acharya, R. Desai, V. K. Aswal, & R. V. Upadhyay. Structure of Co-Zn ferrite ferrofluid: A small angle neutron scattering analysis. Pramana, 1069–1074, 71(5), (2008); https://doi.org/10.1007/s12043-008-0225-7

R. D. Waldron. Infrared spectra of ferrites. The Physical Review, 1727–1735, 99(6), (1955); https://doi.org/10.1103/physrev.99.1727.

V. G. Patil, S. E. Shirsath, S. D. More, S. J. Shukla, & K. M. Jadhav. Effect of zinc substitution on structural and elastic properties of cobalt ferrite. Journal of Alloys and Compounds, 199–203, 488(1), (2009); https://doi.org/10.1016/j.jallcom.2009.08.078.

S. M. Patange, S. E. Shirsath, S. P. Jadhav, V. S. Hogade, S. R. Kamble & K. M. Jadhav. Elastic properties of nanocrystalline aluminum substituted nickel ferrites prepared by co-precipitation method. Journal of Molecular Structure, 40–44, 1038, (2013); https://doi.org/10.1016/j.molstruc.2012.12.053.

M. R. Patil, M. K. Rendale, S. N. Mathad, & R. B. Pujar. FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites. International Journal of Self-Propagating High-Temperature Synthesis, 33–39, 26(1), (2017); https://doi.org/10.3103/s1061386217010083.

M. Thavarani, M. C. Robert, N. Pavithra, R. Saravanan, Y. B. Kannan, & S. B. Prasath. Effect of Ca2+ doping on the electronic charge density and magnetic properties of ZnFe2O4 spinel ferrites. Journal of Materials Science: Materials in Electronics, 4116–4131, 33(7), (2022); https://doi.org/10.1007/s10854-021-07605-8.

N. Abinaya, M. C. Robert, N. Srinivasan, & S. Saravanakumar. Electron density mapping and bonding in Mn doped CoFe2O4 using XRD, and its correlation with room temperature optical and magnetic properties. Journal of Magnetism and Magnetic Materials, 170938, 580, (2023); https://doi.org/10.1016/j.jmmm.2023.170938.

S. K. Ahmed, M. F. Mahmood, M. Arifuzzaman, & M. Belal Hossen. Enhancement of electrical and magnetic properties of Al3+ substituted CuZn nano ferrites with structural Rietveld refinement. Results in Physics, 104833, 30, (2021); https://doi.org/10.1016/j.rinp.2021.104833.

留言 (0)

沒有登入
gif