Effects of Altitude training on Ethiopian endurance athletes recovery heart rate and hematological variables

Saunders PU, Garvican-Lewis LA, Chapman RF, Périard JD. Special Environments: Altitude and Heat. Int J Sport Nutr Exerc Metab. 2019;29(2):210–219. https://doi.org/10.1123/ijsnem.2018-0256

Krzysztof M, Mero A. A kinematics analysis of three best 100 m performances ever. J Hum Kinet. 2013;36:149–60. https://doi.org/10.2478/hukin-2013-0015

Bärtsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18 (Suppl 1):1-10. https://doi.org/10.1111/j.1600-0838.2008.00827.x

Stray-Gundersen J, Levine BD. Live high, train low at natural altitude. Scand J Med Sci Sports. 2008(Suppl 1):21–8. https://doi.org/10.1111/j.1600-0838.2008.00829.x

Burtscher M, Niedermeier M, Burtscher J, Pesta D, Suchy J, Strasser B. Preparation for Endurance Competitions at Altitude: Physiological, Psychological, Dietary and Coaching Aspects. A Narrative Review. Front Physiol. 2018;29;9:1504. https://doi.org/10.3389/fphys.2018.01504

Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):1–25. https://doi.org/10.2165/11317920-000000000-00000

Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW. Does 'altitude training' increase exercise performance in elite athletes? Br J Sports Med. 2012;46(11):792–5. https://doi.org/10.1136/bjsports-2012-091231

Jung WS, Kim SW, Park HY. Interval Hypoxic Training Enhances Athletic Performance and Does Not Adversely Affect Immune Function in Middle- and Long-Distance Runners. Int J Environ Res Public Health. 2020;17(6):1934. https://doi.org/10.3390/ijerph17061934

Bonetti DL, Hopkins WG. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107–27. https://doi.org/10.2165/00007256-200939020-00002

Czuba M, Maszczyk A, Gerasimuk D, Roczniok R, Fidos-Czuba O, Zając A, et al. The effects of hypobaric hypoxia on erythropoiesis, maximal oxygen uptake and energy cost of exercise under normoxia in elite biathletes. J Sports Sci Med. 2014;13(4):912–20.

Tilahun Muche Z, Haile Wondimu D, Bayissa Midekssa M, Chekol Abebe E, Mengie Ayele T, Abebe Zewdie E. A Comparative Study of Hematological Parameters of Endurance Runners at Guna Athletics Sport Club (3100 Meters above Sea Level) and Ethiopian Youth Sport Academy (2400 Meters above Sea Level), Ethiopia. J Sports Med (Hindawi Publ Corp). 2021;4;2021:8415100. https://doi.org/10.1155/2021/8415100

Friedmann-Bette B. Classical altitude training. Scand J Med Sci Sports. 2008;18 (Suppl 1):11–20. https://doi.org/10.1111/j.1600-0838.2008.00828.x

Hamilton B. East African running dominance: what is behind it? Br J Sports Med. 2000;34(5):391–4. https://doi.org/10.1136/bjsm.34.5.391

Anderson T. Biomechanics and running economy. Sports Med. 1996;22(2):76–89. https://doi.org/10.2165/00007256-199622020-00003

Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34(7):465–85. https://doi.org/10.2165/00007256-200434070-00005

Wilber RL, Pitsiladis YP. Kenyan and Ethiopian distance runners: what makes them so good? Int J Sports Physiol Perform. 2012;7(2):92–102. https://doi.org/10.1123/ijspp.7.2.92

Assefa E, Getachew D. Bokojo Town Long-Distance Running Dominance: What Justifies It?, International Journal of Science and Research. 2015; 4(6):1274–1277.

Heydenreich J, Kayser B, Schutz Y, Melzer K. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review. Sports Med Open. 2017;3(1):8. https://doi.org/10.1186/s40798-017-0076-1

Tucker R, Onywera VO, Santos-Concejero J. Analysis of the Kenyan distance-running phenomenon. Int J Sports Physiol Perform. 2015;10(3):285–91. https://doi.org/10.1123/ijspp.2014-0247

Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35(2):297–304. https://doi.org/10.1249/01.MSS.0000053556.59992.A9

Larsen HB, Sheel AW. The Kenyan runners. Scand J Med Sci Sports. 2015;25 (Suppl 4):110–8. https://doi.org/10.1111/sms.12573

Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):161–70. https://doi.org/10.1016/s1095-6433(03)00227-7

Scott RA, Georgiades E, Wilson RH, Goodwin WH, Wolde B, Pitsiladis YP. Demographic characteristics of elite Ethiopian endurance runners. Med Sci Sports Exerc. 2003;35(10):1727–32. https://doi.org/10.1249/01.MSS.0000089335.85254.89

Scheinfeldt LB, Soi S, Thompson S, Ranciaro A, Woldemeskel D, Beggs W, et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 2012;13(1):R1. https://doi.org/10.1186/gb-2012-13-1-r1

Moran CN, Scott RA, Adams SM, Warrington SJ, Jobling MA, Wilson RH, et al. Y chromosome haplogroups of elite Ethiopian endurance runners. Hum Genet. 2004;115(6):492–7. https://doi.org/10.1007/s00439-004-1202-y

Alene GD, Worku A. Examining perceptions of rapid population growth in North and South Gondar zones, northwest Ethiopia. J Health Popul Nutr. 2009;27(6):784–93. https://doi.org/10.3329/jhpn.v27i6.4330

Gebregiorgis ME, Kishore CK. Ethiopian athletes ` success with altitudinal variations, athlete’ s distribution and regional states contribution on athlete’ s production. International Journal of Physical Education, Sports and Health. 2022;9(3):38–50. https://doi.org/10.22271/kheljournal.2022.v9.i3a.2511

Kentiba E, George M, Mondal S, Mathi Vanan D. Effects of altitude on chronotype orientations in relation to cardiorespiratory and hematological quantities of college students in Ethiopia. PLoS One. 2019;14(7):e0219836. https://doi.org/10.1371/journal.pone.0219836

Mesfin K, Tesfaye S, Girma K, Dejene A, Tsegaye G. Description, characterization and classification of the major soils in Jinka Agricultural Research Center, South Western Ethiopia. Journal of Soil Science and Environmental Management, 2017, 8(3), :61–69. https://doi.org/10.5897/jssem2015.0498

Kiflu A, Beyene S, Jeff S. Characterization of problem soils in and around the south-central Ethiopian Rift Valley. Journal of Soil Science and Environmental Management, 2016, 7(11):191–203, https://doi.org/10.5897/jssem2016.0593

Seyoum YH. Perceptions, vulnerability and adaptation to climate change in Ethiopia: the case of smallholder farmers in Sidama [Internet]. 2015. [updated 2023 Jun; cited 2023 Sep 28]. Available from: https://roar.uel.ac.uk/4470/

Williams C, O'Brien L, Bardoel A, Martin J, Holland AE, Carey L, White J, Haines TP. A novel counterbalanced implementation study design: methodological description and application to implementation research. Implement Sci. 2019; 14(1):45. https://doi.org/10.1186/s13012-019-0896-0

Srista M, Sunit C, Karishma RP, Nirmala L, Dharanidhar B, Dipesh RP. Effect of three-minute step test on cognition among medical students. Malang Neurology Journal, 2021, 7(2):120–124. https://doi.org/10.21776/ub.mnj.2020.007.02.7

Bhattarai P, Paudel BH, Thakur D, Bhattarai B, Subedi B, Khadka R. Effect of long term high altitude exposure on cardiovascular autonomic adjustment during rest and post-exercise recovery. Ann Occup Environ Med. 2018; 30:34. https://doi.org/10.1186/s40557-018-0240-1

Simundic AM, Bölenius K, Cadamuro J, Church S, Cornes MP, et al. Joint EFLM-COLABIOCLI Recommendation for venous blood sampling. Clin Chem Lab Med. 2018; 56(12):2015–2038. https://doi.org/10.1515/cclm-2018-0602

Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. Journal of Applied Physiology, 1997;83(1): 102–112. https://doi.org/10.1152/jappl.1997.83.1.102

Wehrlin JP, Zuest P, Hallén J, Marti B. Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. Journal of Applied Physiology, 2006;100(6): 1938–1945. https://doi.org/10.1152/japplphysiol.01284.2005

Mounier R, Pialoux V, Cayre A, Schmitt L, Richalet JP, Robach P, et al. Leukocyte's Hif-1 expression and training-induced erythropoietic response in swimmers. Med Sci Sports Exerc. 2006; 38(8):1410–7. https://doi.org/10.1249/01.mss.0000228955.98215.a1

Chapman RF, Karlsen T, Resaland GK, Ge RL, Harber MP, Witkowski S, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. Journal of Applied Physiology, 2014;116(6): 595–603. https://doi.org/10.1152/japplphysiol.00634.2013

Park HY, Hwang H, Park J, Lee S, Lim K. The effects of altitude/hypoxic training on oxygen delivery capacity of the blood and aerobic exercise capacity in elite athletes - a meta-analysis. J Exerc Nutrition Biochem. 2016; 20(1):15–22. https://doi.org/10.20463/jenb.2016.03.20.1.3

Rodríguez FA, Ventura JL, Casas M, Casas H, Pagés T, Rama R, et al. Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol. 2000; 82(3):170–7. https://doi.org/10.1007/s004210050669

Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. Journal of Applied Physiology, 2001;91(3): 1113–1120. https://doi.org/10.1152/jappl.2001.91.3.1113

Clark SA, Quod MJ, Clark MA, Martin DT, Saunders PU, Gore CJ. Time course of haemoglobin mass during 21 days live high:train low simulated altitude. Eur J Appl Physiol. 2009; 106(3):399–406. https://doi.org/10.1007/s00421-009-1027-4

Garvican L, Martin D, Quod M, Stephens B, Sassi A, Gore C. Time course of the hemoglobin mass response to natural altitude training in elite endurance cyclists. Scand J Med Sci Sports. 2012; 22(1):95–103. https://doi.org/10.1111/j.1600-0838.2010.01145.x

Pottgiesser T, Garvican LA, Martin DT, Featonby JM, Gore CJ, Schumacher YO. Short-term hematological effects upon completion of a four-week simulated altitude camp. Int J Sports Physiol Perform. 2012; 7(1):79–83. https://doi.org/10.1123/ijspp.7.1.79

Neya M, Enoki T, Ohiwa N, Kawahara T, Gore CJ. Increased hemoglobin mass and VO2max with 10 h nightly simulated altitude at 3000 m. Int J Sports Physiol Perform. 2013; 8(4):366–72. https://doi.org/10.1123/ijspp.8.4.366

Schuler B, Thomsen JJ, Gassmann M, Lundby C. Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports. 2007; 17(5):588–94. https://doi.org/10.1111/j.1600-0838.2006.00611.x

Schmidt W, Heinicke K, Rojas J, Manuel Gomez J, Serrato M, et al. Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc. 2002; 34(12):1934–40. https://doi.org/10.1097/00005768-200212000-00012

Gore CJ, Hahn AG, Burge CM, Telford RD. VO2max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;18(6):477–82. https://doi.org/10.1055/s-2007-972667

Czuba M, Fidos-Czuba O, Płoszczyca K, Zając A, Langfort J. Comparison of the effect of intermittent hypoxic training vs. the live high, train low strategy on aerobic capacity and sports performance in cyclists in normoxia. Biol Sport. 2018; 35(1):39–48. https://doi.org/10.5114/biolsport.2018.70750

Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, et al. Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. British Journal of Sports Medicine, 2013;47(Suppl 1): i31–i39. https://doi.org/10.1136/bjsports-2013-092840

Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude Exposure at 1800 m Increases Haemoglobin Mass in Distance Runners. J Sports Sci Med. 2015;14(2):413–7.

Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, et al. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High Alt Med Biol. 2014;15(3):371–-9. https://doi.org/10.1089/ham.2013.1114

Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Schumacher YO. Hemoglobin mass after 21 days of conventional altitude training at 1816 m. J Sci Med Sport. 2009; 12(6):673–5. https://doi.org/10.1016/j.jsams.2008.06.005

Hartmann S, Krafft A, Huch R, Breymann C. Effect of altitude on thrombopoietin and the platelet count in healthy volunteers. Thromb Haemost. 2005; 93(1):115–7. https://doi.org/10.1160/TH04-02-0086

Hudson JG, Bowen AL, Navia P, Rios-Dalenz J, Pollard AJ, Williams D, et al. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes. Int J Biometeorol. 1999; 43(2):85–90. https://doi.org/10.1007/s004840050120

Sakita S, Kishi Y, Numano F. Acute vigorous exercise attenuates sensitivity of platelets to nitric oxide. Thromb Res. 1997; 87(5):461–71. https://doi.org/10.1016/s0049-3848(97)00162-x

Singh I, Quinn H, Mok M, Southgate RJ, Turner AH, Li D, et al. The effect of exercise and training status on platelet activation: do cocoa polyphenols play a role? Platelets. 2006; 17(6):361–7. https://doi.org/10.1080/09537100600746953

Wang JS, Jen CJ, Kung HC, Lin LJ, Hsiue TR, Chen HI. Different effects of strenuous exercise and moderate exercise on platelet function in men. Circulation. 1994; 90(6):2877–85. https://doi.org/10.1161/01.cir.90.6.2877

El-Sayed MS, Sale C, Jones PG, Chester M. Blood hemostasis in exercise and training. Med Sci Sports Exerc. 2000; 32(5):918–25. https://doi.org/10.1097/00005768-200005000-00007

Drygas WK. Changes in blood platelet function, coagulation, and fibrinolytic activity in response to moderate, exhaustive, and prolonged exercise. Int J Sports Med. 1988; 9(1):67–72. https://doi.org/10.1055/s-2007-1024981

Kestin AS, Ellis PA, Barnard MR, Errichetti A, Rosner BA, Michelson AD. Effect of strenuous exercise on platelet activation state and reactivity. Circulation, 1993;88(4): 1502–1511. https://doi.org/10.1161/01.cir.88.4.1502

Lamberts RP, Swart J, Capostagno B, Noakes TD, Lambert MI. Heart rate recovery as a guide to monitor fatigue and predict changes in performance parameters. Scand J Med Sci Sports. 2010; 20(3):449-57. https://doi.org/10.1111/j.1600-0838.2009.00977.x

Borresen J, Lambert MI. Changes in heart rate recovery in response to acute changes in training load. Eur J Appl Physiol. 2007;101(4):503–11. https://doi.org/10.1007/s00421-007-0516-6

Dupuy O, Bherer L, Audiffren M, Bosquet L. Night and postexercise cardiac autonomic control in functional overreaching. Appl Physiol Nutr Metab. 2013; 38(2):200–8. https://doi.org/10.1139/apnm-2012-0203

Lee CM, Mendoza A. Dissociation of heart rate variability and heart rate recovery in well-trained athletes. Eur J Appl Physiol. 2012; 112(7):2757–66. https://doi.org/10.1007/s00421-011-2258-8

Boullosa DA, Abreu L, Nakamura FY, Muñoz VE, Domínguez E, Leicht AS. Cardiac autonomic adaptations in elite Spanish soccer players during preseason. Int J Sports Physiol Perform. 2013; 8(4):400–9. https://doi.org/10.1123/ijspp.8.4.400

Gocentas A, Landõr AKriščiūnas A, Heart Rate Recovery Changes during Competition Period in High-Level Basketball Players. Balt J Sport Health Sci, 2011;1(80), 11–16. https://doi.org/10.33607/bjshs. v1i80.334

Ostojic SM, Stojanovic MD, Calleja-Gonzalez J. Ultra short-term heart rate recovery after maximal exercise: relations to aerobic power in sportsmen. Chin J Physiol. 2011; 54(2):105–10. https://doi.org/10.4077/CJP.2011.AMM018

Buchheit M, Chivot A, Parouty J, Mercier D, Al Haddad H, Laursen PB, Ahmaidi S. Monitoring endurance running performance using cardiac parasympathetic function. Eur J Appl Physiol. 2010; 108(6):1153–67. https://doi.org/10.1007/s00421-009-1317-x

留言 (0)

沒有登入
gif