Parkinson, J. An essay on the shaking palsy. 1817. J. Neuropsychiatry Clin. Neurosci. 14, 223–236 (2002).
Lees, A. An essay on the shaking palsy. Brain 140, 843–848 (2017).
Goetz, C. G. Charcot on Parkinson’s disease. Mov. Disord. 1, 27–32 (1986).
Article CAS PubMed Google Scholar
Goetz, C. G. The history of Parkinson’s disease: early clinical descriptions and neurological therapies. Cold Spring Harb. Perspect. Med. 1, a008862 (2011).
Article PubMed PubMed Central Google Scholar
Staunton, H. et al. A patient-centered conceptual model of symptoms and their impact in early Parkinson’s disease: a qualitative study. J. Parkinsons Dis. 12, 137–151 (2022).
Article PubMed PubMed Central Google Scholar
Rahman, S., Griffin, H. J., Quinn, N. P. & Jahanshahi, M. Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov. Disord. 23, 1428–1434 (2008).
Yang, W. et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Parkinsons Dis. 6, 15 (2020).
Article PubMed PubMed Central Google Scholar
Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).
Article CAS PubMed PubMed Central Google Scholar
Postuma, R. B. et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30, 1591–1601 (2015).
Bologna, M. et al. Redefining bradykinesia. Mov. Disord. 38, 551–557 (2023).
Article PubMed PubMed Central Google Scholar
Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).
Article CAS PubMed Google Scholar
Penney, J. B. Jr. & Young, A. B. Striatal inhomogeneities and basal ganglia function. Mov. Disord. 1, 3–15 (1986).
Marsden, C. D. & Obeso, J. A. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 117, 877–897 (1994).
Lobb, C. Abnormal bursting as a pathophysiological mechanism in Parkinson’s disease. Basal Ganglia 3, 187–195 (2014).
Brown, P. & Williams, D. Basal ganglia local field potential activity: character and functional significance in the human. Clin. Neurophysiol. 116, 2510–2519 (2005).
Brittain, J. S. & Brown, P. Oscillations and the basal ganglia: motor control and beyond. Neuroimage 85, 637–647 (2014).
Nambu, A., Tachibana, Y. & Chiken, S. Cause of parkinsonian symptoms: firing rate, firing pattern or dynamic activity changes? Basal Ganglia https://doi.org/10.1016/j.baga.2014.11.001 (2015).
McGregor, M. M. & Nelson, A. B. Circuit mechanisms of Parkinson’s disease. Neuron 101, 1042–1056 (2019).
Article CAS PubMed Google Scholar
Muralidharan, A. et al. Physiological changes in the pallidum in a progressive model of Parkinson’s disease: are oscillations enough? Exp. Neurol. 279, 187–196 (2016).
Article CAS PubMed PubMed Central Google Scholar
Joutsa, J., Horn, A., Hsu, J. & Fox, M. D. Localizing parkinsonism based on focal brain lesions. Brain 141, 2445–2456 (2018).
Article PubMed PubMed Central Google Scholar
Bologna, M., Paparella, G., Fasano, A., Hallett, M. & Berardelli, A. Evolving concepts on bradykinesia. Brain 143, 727–750 (2020).
DeLong, M. R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285 (1990).
Article CAS PubMed Google Scholar
Inase, M., Tokuno, H., Nambu, A., Akazawa, T. & Takada, M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res. 833, 191–201 (1999).
Article CAS PubMed Google Scholar
Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 43, 111–117 (2002).
Obeso, J. A. & Lanciego, J. L. Past, present, and future of the pathophysiological model of the basal ganglia. Front. Neuroanat. 5, 39 (2011).
Article PubMed PubMed Central Google Scholar
Künzle, H. & Akert, K. Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J. Comp. Neurol. 173, 147–164 (1977).
Monakow, K. H., Akert, K. & Künzle, H. Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Exp. Brain Res. 33, 395–403 (1978).
Article CAS PubMed Google Scholar
Rico, A. J. et al. A direct projection from the subthalamic nucleus to the ventral thalamus in monkeys. Neurobiol. Dis. 39, 381–392 (2010).
Sadikot, A. F., Parent, A. & François, C. Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J. Comp. Neurol. 315, 137–159 (1992).
Article CAS PubMed Google Scholar
Féger, J., Bevan, M. & Crossman, A. R. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 60, 125–132 (1994).
Abdi, A. et al. Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. J. Neurosci. 35, 6667–6688 (2015).
Article CAS PubMed PubMed Central Google Scholar
Mallet, N. et al. Dichotomous organization of the external globus pallidus. Neuron 74, 1075–1086 (2012).
Article CAS PubMed PubMed Central Google Scholar
Suzanne, N. H., Julie, L. F. & Nikolaus, R. M. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369 (2000).
Bergman, H., Wichmann, T. & DeLong, M. R. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438 (1990).
留言 (0)