Digital Technology Enablers of Tele-Neurorehabilitation in Pre- and Post-COVID-19 Pandemic Era – A Scoping Review

Adams, J. L., Dinesh, K., Xiong, M., Tarolli, C. G., Sharma, S., Sheth, N., Aranyosi, A. J., Zhu, W., Goldenthal, S., Biglan, K. M., Dorsey, E. R., & Sharma, G. (2017). Multiple wearable sensors in Parkinson and Huntington disease individuals: A pilot study in clinic and at home. Digital Biomarkers, 1(1), 52-63. https://doi.org/10.1159/000479018

Alexander, M. (2022). Chapter 1 - Introduction. In M. Alexander (Ed.), Telerehabilitation (pp. 1-3). Elsevier. https://doi.org/10.1016/B978-0-323-82486-6.00001-0

Arpaia, P., Coyle, D., Esposito, A., Natalizio, A., Parvis, M., Pesola, M., & Vallefuoco, E. (2023). Paving the way for motor imagery-based tele-rehabilitation through a fully wearable BCI system. Sensors, 23(13), 5836. https://doi.org/10.3390/s23135836

Asakawa, T., Sugiyama, K., Nozaki, T., Sameshima, T., Kobayashi, S., Wang, L., Hong, Z., Chen, S., Li, C., & Namba, H. (2019). Can the latest computerized technologies revolutionize conventional assessment tools and therapies for a neurological disease? The example of Parkinson's disease. Neurologia Medico-Chirurgica, 59(3), 69-78. https://doi.org/10.2176/nmc.ra.2018-0045

Atashzar, S. F., Carriere, J., & Tavakoli, M. (2021). How can intelligent robots and smart mechatronic modules facilitate remote assessment, assistance, and rehabilitation for isolated adults with neuro-musculoskeletal conditions? Frontiers in Robotics and AI, 8(48). https://doi.org/10.3389/frobt.2021.610529

Block, V. J., Lizée, A., Crabtree-Hartman, E., Bevan, C. J., Graves, J. S., Bove, R., Green, A. J., Nourbakhsh, B., Tremblay, M., Gourraud, P. A., Ng, M. Y., Pletcher, M. J., Olgin, J. E., Marcus, G. M., Allen, D. D., Cree, B. A., & Gelfand, J. M. (2017). Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Journal of Neurology, 264(2), 316-326. https://doi.org/10.1007/s00415-016-8334-6

Bohil, C. J., Alicea, B., & Biocca, F. A. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12), 752-762. https://doi.org/10.1038/nrn3122

Brennan, D., Tindall, L., Theodoros, D., Brown, J., Campbell, M., Christiana, D., Smith, D., Cason, J., & Lee, A. (2010). A blueprint for telerehabilitation guidelines. International Journal of Telerehabilitation, 2(2), 31-34. https://doi.org/10.5195/ijt.2010.6063

Brennan, K., Curran, J., Barlow, A., & Jayaraman, A. (2021). Telerehabilitation in neurorehabilitation: Has it passed the COVID test? Expert Review of Neurotherapeutics, 21(8), 833-836. https://doi.org/10.1080/14737175.2021.1958676

Burgos, P. I., Lara, O., Lavado, A., Rojas-Sepúlveda, I., Delgado, C., Bravo, E., Kamisato, C., Torres, J., Castañeda, V., & Cerda, M. (2020). Exergames and telerehabilitation on smartphones to improve balance in stroke patients. Brain Sciences, 10(11). https://doi.org/10.3390/brainsci10110773

Calabro, R. S. (2021). Teleneurorehabilitation in the COVID-19 era: What are we doing now and what will we do next? Medical Sciences, 9(1), 15. https://doi.org/10.3390/medsci9010015

Canali, S., Schiaffonati, V., & Aliverti, A. (2022). Challenges and recommendations for wearable devices in digital health: Data quality, interoperability, health equity, fairness. PLOS Digital Health, 1(10), e0000104. https://doi.org/10.1371/journal.pdig.0000104

Carignan, C. R., & Krebs, H. I. (2006). Telerehabilitation robotics: Bdright lights, big future? Journal of Rehabilitation Research & Development, 43(5), 695-710. https://doi.org/10.1682/jrrd.2005.05.0085

Caso, V., & Federico, A. (2020). No lockdown for neurological diseases during COVID-19 pandemic infection. Neurological Sciences, 41(5), 999-1001. https://doi.org/10.1007/s10072-020-04389-3

Cerfoglio, S., Capodaglio, P., Rossi, P., Verme, F., Boldini, G., Cvetkova, V., Ruggeri, G., Galli, M., & Cimolin, V. (2023). Tele-rehabilitation interventions for motor symptoms in COVID-19 patients: A narrative review. Bioengineering, 10(6), 650. https://doi.org/10.3390/bioengineering10060650

Cieza, A., Causey, K., Kamenov, K., Hanson, S. W., Chatterji, S., & Vos, T. (2020). Global estimates of the need for rehabilitation based on the global burden of disease study 2019: A systematic analysis for the global burden of disease study 2019. The Lancet, 396(10267), 2006-2017. https://doi.org/10.1016/S0140-6736(20)32340-0

Cox, N. S., Scrivener, K., Holland, A. E., Jolliffe, L., Wighton, A., Nelson, S., McCredie, L., & Lannin, N. A. (2021). A brief intervention to support implementation of telerehabilitation by community rehabilitation services during COVID-19: A feasibility study. Archives of Physical Medicine and Rehabilitation, 102(4), 789-795. https://doi.org/10.1016/j.apmr.2020.12.007

Cummins, C., Payne, D., & Kayes, N. M. (2022). Governing neurorehabilitation. Disability and Rehabilitation, 44(17), 4921-4928. https://doi.org/10.1080/09638288.2021.1918771

Dobkin, B. H. (2016). Behavioral self-management strategies for practice and exercise should be included in neurologic rehabilitation trials and care. Current Opinion in Neurology, 29(6), 693-699. https://doi.org/10.1097/wco.0000000000000380

Fazekas, G., & Tavaszi, I. (2019). The future role of robots in neuro-rehabilitation. Expert Review of Neurotherapeutics, 19(6), 471-473. https://doi.org/10.1080/14737175.2019.1617700

Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: Translating evidence into policy. The Lancet Neurology, 19(3), 255-265. https://doi.org/10.1016/s1474-4422(19)30411-9

Feintuch, U., Katz, N., Kizony, R., Rand, D., & Weiss, P. L. (2014). Virtual reality applications in neurorehabilitation. In S. Clarke, L. G. Cohen, G. Kwakkel, R. H. Miller, & M. E. Selzer (Eds.), Textbook of Neural Repair and Rehabilitation: Volume 2: Medical Neurorehabilitation (2 ed., Vol. 2, pp. 198-218). Cambridge University Press. https://doi.org/10.1017/CBO9780511995590.021

Galea, M. D. (2019). Telemedicine in rehabilitation. Physical Medicine and Rehabilitation Clinics, 30(2), 473-483. https://doi.org/10.1016/j.pmr.2018.12.002

Ganapathy, K. (2021). Tele-rehabilitation - The time has come. Asian Hospital & Healthcare Management, (53). https://www.asianhhm.com/information-technology/tele-rehabilitation

Garg, D., & Dhamija, R. K. (2020). Teleneurorehabilitation for Parkinson’s disease: A panacea for the times to come? Annals of Indian Academy of Neurology, 23(5), 592-597. https://doi.org/10.4103/aian.AIAN_566_20

Georgiev, D. D., Georgieva, I., Gong, Z., Nanjappan, V., & Georgiev, G. V. (2021). Virtual reality for neurorehabilitation and cognitive enhancement. Brain Sciences, 11(2). https://doi.org/10.3390/brainsci11020221

Glegg, S. M., Holsti, L., Velikonja, D., Ansley, B., Brum, C., & Sartor, D. (2013). Factors influencing therapists' adoption of virtual reality for brain injury rehabilitation. Cyberpsychology, Behavior and Social Networking, 16(5), 385-401. https://doi.org/10.1089/cyber.2013.1506

Goffredo, M., Pagliari, C., Turolla, A., Tassorelli, C., Di Tella, S., Federico, S., Pournajaf, S., Jonsdottir, J., De Icco, R., Pellicciari, L., Calabrò, R. S., Baglio, F., & Franceschini, M. (2023). Non-immersive virtual reality telerehabilitation system improves postural balance in people with chronic neurological diseases. Journal of Clinical Medicine, 12(9), 3178. https://doi.org/10.3390/jcm12093178

Golomb, M. R., McDonald, B. C., Warden, S. J., Yonkman, J., Saykin, A. J., Shirley, B., Huber, M., Rabin, B., AbdelBaky, M., & Nwosu, M. E. (2010). In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Archives of Physical Medicine and Rehabilitation, 91(1), 1-8. https://doi.org/10.1016/j.apmr.2009.08.153

Guo, Q.-F., He, L., Su, W., Tan, H.-X., Han, L.-Y., Gui, C.-F., Chen, Y., Jiang, H.-H., & Gao, Q. (2022). Virtual reality for neurorehabilitation: A bibliometric analysis of knowledge structure and theme trends. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1042618

Gutiérrez, R. O., Galán Del Río, F., Cano de la Cuerda, R., Alguacil Diego, I. M., González, R. A., & Page, J. C. (2013). A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation, 33(4), 545-554. https://doi.org/10.3233/nre-130995

Hidler, J., & Sainburg, R. (2011). Role of robotics in neurorehabilitation. Topics in Spinal Cord Injury Rehabilitation, 17(1), 42-49. https://doi.org/10.1310/sci1701-42

Huang, V. S., & Krakauer, J. W. (2009). Robotic neurorehabilitation: A computational motor learning perspective. Journal of NeuroEngineering and Rehabilitation, 6(1), 5. https://doi.org/10.1186/1743-0003-6-5

Iandolo, R., Marini, F., Semprini, M., Laffranchi, M., Mugnosso, M., Cherif, A., De Michieli, L., Chiappalone, M., & Zenzeri, J. (2019). Perspectives and challenges in robotic neurorehabilitation. Applied Sciences, 9(15), 3183. https://doi.org/10.3390/app9153183

Iodice, F., Romoli, M., Giometto, B., Clerico, M., Tedeschi, G., Bonavita, S., Leocani, L., Lavorgna, L., Digital Technologies, W., & Social Media Study Group of the Italian Society of, N. (2021). Stroke and digital technology: A wake-up call from COVID-19 pandemic. Neurological Sciences, 42(3), 805-809. https://doi.org/10.1007/s10072-020-04993-3

Jagos, H., David, V., Haller, M., Kotzian, S., Hofmann, M., Schlossarek, S., Eichholzer, K., Winkler, M., Frohner, M., Reichel, M., Mayr, W., & Rafolt, D. (2015). A framework for (tele-) monitoring of the rehabilitation progress in stroke patients: Ehealth 2015 special issue. Applied Clinical Informatics Journal, 6(4), 757-768. https://doi.org/10.4338/aci-2015-03-ra-0034

Jeon, H., Lee, W., Park, H., Lee, H. J., Kim, S. K., Kim, H. B., Jeon, B., & Park, K. S. (2017). Automatic classification of tremor severity in Parkinson's disease using a wearable device. Sensors, 17(9). https://doi.org/10.3390/s17092067

Johnson, M. J., & Schmidt, H. (2009). Robot assisted neurological rehabilitation at home: Motivational aspects and concepts for tele-rehabilitation. Public Health Forum, 17(4), 8. https://doi.org/10.1016/j.phf.2009.09.005

Khanna, M., Gowda, G. S., Bagevadi, V. I., Gupta, A., Kulkarni, K., RP, S. S., Basavaraju, V., Ramesh, M. B., Sashidhara, H. N., Manjunatha, N., Channaveerachari, N. K., & Math, S. B. (2018). Feasibility and utility of tele-neurorehabilitation service in India: Experience from a quaternary center. Journal of Neurosciences in Rural Practice, 9(4), 541-544. https://doi.org/10.4103/jnrp.jnrp_104_18

Klaic, M., & Galea, M. P. (2020). Using the technology acceptance model to identify factors that predict likelihood to adopt tele-neurorehabilitation. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.580832

Kuo, C.-Y., Liu, C.-W., Lai, C.-H., Kang, J.-H., Tseng, S.-H., & Su, E. C.-Y. (2021). Prediction of robotic neurorehabilitation functional ambulatory outcome in patients with neurological disorders. Journal of NeuroEngineering and Rehabilitation, 18(1), 174. https://doi.org/10.1186/s12984-021-00965-6

Lambercy, O., Lehner, R., Chua, K., Wee, S. K., Rajeswaran, D. K., Kuah, C. W. K., Ang, W. T., Liang, P., Campolo, D., Hussain, A., Aguirre-Ollinger, G., Guan, C., Kanzler, C. M., Wenderoth, N., & Gassert, R. (2021). Neurorehabilitation from a distance: Can intelligent technology support decentralized access to quality therapy? Frontiers in Robotics and AI, 8(126). https://doi.org/10.3389/frobt.2021.612415

Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159-174. https://doi.org/10.2307/2529310

Lee, D., & Hwang, S. (2019). Motor imagery on upper extremity function for persons with stroke: A systematic review and meta-analysis. Physical Therapy Rehabilitation Science, 8(1), 52-59. https://doi.org/10.14474/ptrs.2019.8.1.52

Li, Z., Han, X.-G., Sheng, J., & Ma, S.-J. (2016). Virtual reality for improving balance in patients after stroke: A systematic review and meta-analysis. Clinical Rehabilitation, 30(5), 432-440. https://doi.org/10.1177/0269215515593611

López-Larraz, E., Montesano, L., Gil-Agudo, Á., Minguez, J., & Oliviero, A. (2015). Evolution of EEG motor rhythms after spinal cord injury: A longitudinal study. PLOS One, 10(7), e0131759. https://doi.org/10.1371/journal.pone.0131759

Maetzler, W., Domingos, J., Srulijes, K., Ferreira, J. J., & Bloem, B. R. (2013). Quantitative wearable sensors for objective assessment of Parkinson's disease. Movement Disorders, 28(12), 1628-1637. https://doi.org/10.1002/mds.25628

Maldonado-Díaz, M., Vargas, P., Vasquez, R., Gonzalez-Seguel, F., Rivero, B., Hidalgo-Cabalín, V., & Gutierrez-Panchana, T. (2021). Teleneurorehabilitation program (virtual reality) for patients with balance disorders: Descriptive study. BMC Sports Science, Medicine and Rehabilitation, 13(1), 83. https://doi.org/10.1186/s13102-021-00314-z

Mancuso, V., Bruni, F., Stramba-Badiale, C., Riva, G., Cipresso, P., & Pedroli, E. (2023). How do emotions elicited in virtual reality affect our memory? A systematic review. Computers in Human Behavior, 146, 107812. https://doi.org/10.1016/j.chb.2023.107812

Mansour, S., Ang, K. K., Nair, K. P., Phua, K. S., & Arvaneh, M. (2022). Efficacy of brain–computer interface and the impact of its design characteristics on poststroke upper-limb rehabilitation: A systematic review and meta-analysis of randomized controlled trials. Clinical EEG and Neuroscience, 53(1), 79-90. https://doi.org/10.1177/15500594211009065

Maresca, G., Maggio, M. G., De Luca, R., Manuli, A., Tonin, P., Pignolo, L., & Calabrò, R. S. (2020). Tele-neuro-rehabilitation in Italy: State of the art and future perspectives. Frontiers in Neurology, 11, 563375. https://doi.org/10.3389/fneur.2020.563375

Massetti, T., da Silva, T. D., Crocetta, T. B., Guarnieri, R., de Freitas, B. L., Bianchi Lopes, P., Watson, S., Tonks, J., & de Mello Monteiro, C. B. (2018). The clinical utility of virtual reality in neurorehabilitation: A systematic review. Journal of Central Nervous System Disease, 10, 1179573518813541. https://doi.org/10.1177/1179573518813541

Matamala-Gomez, M., Bottiroli, S., Realdon, O., Riva, G., Galvagni, L., Platz, T., Sandrini, G., De Icco, R., & Tassorelli, C. (2021). Telemedicine and virtual reality at time of COVID-19 pandemic: An overview for future perspectives in neurorehabilitation. Frontiers in Neurology, 12, 646902. https://doi.org/10.3389/fneur.2021.646902

Matamala-Gomez, M., Maisto, M., Montana, J. I., Mavrodiev, P. A., Baglio, F., Rossetto, F., Mantovani, F., Riva, G., & Realdon, O. (2020). The role of engagement in teleneurorehabilitation: A systematic review. Frontiers in Neurology, 11, 354. https://doi.org/10.3389/fneur.2020.00354

Matthews, D. (2018). Virtual-reality applications give science a new dimension. Nature, 557(7703), 127-128. https://doi.org/10.1038/d41586-018-04997-2

McCue, M., Fairman, A., & Pramuka, M. (2010). Enhancing quality of life through telerehabilitation. Physical Medicine and Rehabilitation Clinics of North America, 21(1), 195-205. https://doi.org/10.1016/j.pmr.2009.07.005

Mobini, A., Behzadipour, S., & Foumani, M. S. (2013). Robotics and tele-rehabilitation: Recent advancements, future trends. International Journal of Reliable and Quality E-Healthcare, 2(4), 1-13. https://doi.org/10.4018/ijrqeh.2013100101

Montana, J. I., Matamala-Gomez, M., Maisto, M., Mavrodiev, P. A., Cavalera, C. M., Diana, B., Mantovani, F., & Realdon, O. (2020). The benefits of emotion regulation interventions in virtual reality for the improvement of wellbeing in adults and older adults: A systematic review. Journal of Clinical Medicine, 9(2), E500. https://doi.org/10.3390/jcm9020500

Mosca, I. E., Salvadori, E., Gerli, F., Fabbri, L., Pancani, S., Lucidi, G., Lombardi, G., Bocchi, L., Pazzi, S., Baglio, F., Vannetti, F., Sorbi, S., & Macchi, C. (2020). Analysis of feasibility, adherence, and appreciation of a newly developed tele-rehabilitation program for people with MCI and VCI. Frontiers in Neurology, 11, 583368-583368. https://doi.org/10.3389/fneur.2020.583368

Motl, R., Pilutti, L., Sandroff, B., Dlugonski, D., Sosnoff, J., & Pula, J. (2013). Accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurologica Scandinavica, 127(6), 384-390. https://doi.org/10.1111/ane.12036

Mumford, N., Duckworth, J., Thomas, P. R., Shum, D., Williams, G., & Wilson, P. H. (2012). Upper-limb virtual rehabilitation for traumatic brain injury: A preliminary within-group evaluation of the elements system. Brain Injury, 26(2), 166-176. https://doi.org/10.3109/02699052.2011.648706

Neven, A., Vanderstraeten, A., Janssens, D., Wets, G., & Feys, P. (2016). Understanding walking activity in multiple sclerosis: Step count, walking intensity and uninterrupted walking activity duration related to degree of disability. Neurological Sciences, 37, 1483-1490. https://doi.org/10.1007/s10072-016-2609-7

Ng, A. V., & Kent-Braun, J. A. (1997). Quantitation of lower physical activity in persons with multiple sclerosis. Medicine and Science in Sports and Exercise, 29(4), 517-523. https://doi.org/10.1097/00005768-199704000-00014

Nieto-Escamez, F., Cortés-Pérez, I., Obrero-Gaitán, E., & Fusco, A. (2023). Virtual reality applications in neurorehabilitation: Current panorama and challenges. Brain Sciences, 13(5). https://doi.org/10.3390/brainsci13050819

Nijenhuis, S. M., Prange-Lasonder, G. B., Stienen, A. H., Rietman, J. S., & Buurke, J. H. (2017). Effects of training with a passive hand orthosis and games at home in chronic stroke: A pilot randomised controlled trial. Clinical Rehabilitation, 31(2), 207-216. https://doi.org/10.1177/0269215516629722

Nuara, A., Fabbri-Destro, M., Scalona, E., Lenzi, S. E., Rizzolatti, G., & Avanzini, P. (2022). Telerehabilitation in response to constrained physical distance: An opportunity to rethink neurorehabilitative routines. Journal of Neurology, 269(2), 627-638. https://doi.org/10.1007/s00415-021-10397-w

Ona, E. D., Cano-de la Cuerda, R., Sanchez-Herrera, P., Balaguer, C., & Jardon, A. (2018). A review of robotics in neurorehabilitation: Towards an automated process for upper limb. Journal of Healthcare Engineering, 2018, 9758939. https://doi.org/10.1155/2018/9758939

Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., & Bugeja, M. (2022). A comprehensive review of endogenous EEG-based BCIs for dynamic device control. Sensors, 22(15), 5802. https://doi.org/10.3390/s22155802

Paloschi, D., Bravi, M., Schena, E., Miccinilli, S., Morrone, M., Sterzi, S., Saccomandi, P., & Massaroni, C. (2021). Validation and assessment of a posture measurement system with magneto-inertial measurement units. Sensors, 21(19), 6610. https://doi.org/10.3390/s21196610

Park, E., Yun, B. J., Min, Y. S., Lee, Y. S., Moon, S. J., Huh, J. W., Cha, H., Chang, Y., & Jung, T. D. (2019). Effects of a mixed reality-based cognitive training system compared to a conventional computer-assisted cognitive training system on mild cognitive impairment: A pilot study. Cognitive and Behavioral Neurology, 32(3), 172-178. https://doi.org/10.1097/wnn.0000000000000197

Pau, M., Caggiari, S., Mura, A., Corona, F., Leban, B., Coghe, G., Lorefice, L., Marrosu, M. G., & Cocco, E. (2016). Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial sensors: Comparison with patient-based measure. Multiple Sclerosis and Related Disorders, 10, 187-191. https://doi.org/10.1016/j.msard.2016.10.007

Pearson, O. R., Busse, M., Van Deursen, R. W. M., & Wiles, C. M. (2004). Quantification of walking mobility in neurological disorders. QJM: An International Journal of Medicine, 97(8), 463-475. https://doi.org/10.1093/qjmed/hch084

Peretti, A., Amenta, F., Tayebati, S. K., Nittari, G., & Mahdi, S. S. (2017). Telerehabilitation: Review of the state-of-the-art and areas of application. JMIR Rehabilitation and Assistive Technologies, 4(2), e7. https://doi.org/10.2196/rehab.7511

Perez-Marcos, D., Bieler-Aeschlimann, M., & Serino, A. (2018). Virtual reality as a vehicle to empower motor-cognitive neurorehabilitation. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02120

Phu, S., Vogrin, S., Al Saedi, A., & Duque, G. (2019). Balance training using virtual reality improves balance and physical performance in older adults at high risk of falls. Clinical Interventions in Aging, 14, 1567-1577. https://doi.org/10.2147/cia.s220890

Porter, M. E., & Heppelmann, J. E. (2017). Why every organization needs an augmented reality strategy. Harvard Business Review - HBR's 10 Must, 85(November-December 2017). https://hbr.org/2017/11/why-every-organization-needs-an-augmented-reality-strategy

Prasad, G., Herman, P., Coyle, D., McDonough, S., & Crosbie, J. (2010). Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study. Journal of NeuroEngineering and Rehabilitation, 7(1), 1-17. https://doi.org/10.1186/1743-0003-7-60

Rau, C.-L., Chen, Y.-P., Lai, J.-S., Chen, S.-C., Kuo, T.-S., Jaw, F.-S., & Luh, J.-J. (2013). Low-cost tele-assessment system for home-based evaluation of reaching ability following stroke. Telemedicine and e-Health, 19(12), 973-978. https://doi.org/10.1089/tmj.2012.0300

Rogante, M., Grigioni, M., Cordella, D., & Giacomozzi, C. (2010). Ten years of telerehabilitation: A literature overview of technologies and clinical applications. NeuroRehabilitation, 27(4), 287-304. https://doi.org/10.3233/NRE-2010-0612

Saladino, M. L., Gualtieri, C., Scaffa, M., Lopatin, M. F., Kohler, E., Bruna, P., Blaya, P., Testa, C., López, G., Reyna, M., Piedrabuena, R., Mercante, S., Barboza, A., & Cáceres, F. J. (2023). Neuro rehabilitation effectiveness based on virtual reality and tele rehabilitation in people with multiple sclerosis in Argentina: Reavitelem study. Multiple Sclerosis and Related Disorders, 70, 104499. https://doi.org/10.1016/j.msard.2023.104499

Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. https://doi.org/10.1038/nrn1651

Semprini, M., Laffranchi, M., Sanguineti, V., Avanzino, L., De Icco, R., De Michieli, L., & Chiappalone, M. (2018). Technological approaches for neurorehabilitation: From robotic devices to brain stimulation and beyond. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00212

Smuck, M., Odonkor, C. A., Wilt, J. K., Schmidt, N., & Swiernik, M. A. (2021). The emerging clinical role of wearables: Factors for successful implementation in healthcare. npj Digital Medicine, 4(1), 45. https://doi.org/10.1038/s41746-021-00418-3

Sosnoff, J., Sandroff, B., Pula, J., Morrison, S., & Motl, R. (2012). Falls and physical activity in persons with multiple sclerosis. Multiple Sclerosis International, 2012. https://doi.org/10.1155/2012/315620

Srivastava, A., Swaminathan, A., Chockalingam, M., Srinivasan, M. K., Surya, N., Ray, P., Hegde, P. S., Akkunje, P. S., Kamble, S., Chitnis, S., Kamalakannan, S., Ganvir, S., & Shah, U. (2021). Tele-neurorehabilitation during the COVID-19 pandemic: Implications for practice in low- and middle-income countries. Frontiers in Neurology, 12, 667925. https://doi.org/10.3389/fneur.2021.667925

Stasolla, F., Lopez, A., Akbar, K., Vinci, L. A., & Cusano, M. (2023). Matching assistive technology, telerehabilitation, and virtual reality to promote cognitive rehabilitation and communication skills in neurological populations: A perspective proposal. Technologies, 11(2), 43. https://doi.org/10.3390/technologies11020043

Suppa, A., Kita, A., Leodori, G., Zampogna, A., Nicolini, E., Lorenzi, P., Rao, R., & Irrera, F. (2017). L-dopa and freezing of gait in Parkinson's disease: Objective assessment through a wearable wireless system. Frontiers in Neurology, 8, 406. https://doi.org/10.3389/fneur.2017.00406

Tressoldi, P. E., Brembati, F., Donini, R., Iozzino, R., & Vio, C. (2012). Treatment of dyslexia in a regular orthography: Efficacy and efficiency (cost-effectiveness) comparison between home vs clinic-based treatments. Europe’s Journal of Psychology, 8(3), 375-390. https://doi.org/10.5964/ejop.v8i3.442

Truijen, S., Abdullahi, A., Bijsterbosch, D., van Zoest, E., Conijn, M., Wang, Y., Struyf, N., & Saeys, W. (2022). Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurological Sciences, 43(5), 2995-3006. https://doi.org/10.1007/s10072-021-05855-2

Tulsulkar, G., Mishra, N., Thalmann, N. M., Lim, H. E., Lee, M. P., & Cheng, S. K. (2021). Can a humanoid social robot stimulate the interactivity of cognitively impaired elderly? A thorough study based on computer vision methods. The Visual Computer, 37(12), 3019-3038. https://doi.org/10.1007/s00371-021-02242-y

Ustinova, K. I., Perkins, J., Leonard, W. A., & Hausbeck, C. J. (2014). Virtual reality game-based therapy for treatment of postural and co-ordination abnormalities secondary to TBI: A pilot study. Brain Injury, 28(4), 486-495. https://doi.org/10.3109/02699052.2014.888593

Ventura, S., Brivio, E., Riva, G., & Baños, R. M. (2019). Immersive versus non-immersive experience: Exploring the feasibility of memory assessment through 360° technology. Frontiers in Psychology, 10, 2509. https://doi.org/10.3389/fpsyg.2019.02509

Voinescu, A., Sui, J., & Stanton Fraser, D. (2021). Virtual reality in neurorehabilitation: An umbrella review of meta-analyses. Journal of Clinical Medicine, 10(7), 1478. https://doi.org/10.3390/jcm10071478

Weiss, A., Herman, T., Giladi, N., & Hausdorff, J. M. (2015). New evidence for gait abnormalities among parkinson's disease patients who suffer from freezing of gait: Insights using a body-fixed sensor worn for 3 days. Journal of Neural Transmission, 122(3), 403-410. https://doi.org/10.1007/s00702-014-1279-y

留言 (0)

沒有登入
gif